1.Study on anti-inflammatory components from Melicope pteleifolia.
He-Lin WEI ; Tao WANG ; Jing-Jing SUN ; Zhi-Qiang HUANG ; Yi-Ze XIAO ; Jun LI ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(15):4275-4283
Melicope pteleifolia is a plant belonging to the Melicope genus of the Rutaceae family. Known for a bitter taste and cold nature, its stems and tender branches with leaves possess properties of clearing heat, detoxifying, dispelling wind, and removing dampness and can be used to treat sore throat, malaria, jaundice hepatitis, rheumatic bone pain, eczema, dermatitis, and sores and ulcers. In this study, 19 compounds were isolated from the chloroform and n-butanol extracts of M. pteleifolia leaves by using liquid chromatography-mass spectrometry(LC-MS) and proton nuclear magnetic resonance(~1H-NMR)-guided separation techniques. The compounds were identified as isoleptonol(1), leptaones B-E(2-5), friedelin(6), evodionol(7), ethyl p-hydroxybenzoate(8), litseachromolaevane A(9), quercetin-7,3',4'-trimethyl ether(10), kokusaginin(11), 8-(1-hydroxyethyl)-5,6,7-trimethoxy-2,2-dimethyl-2H-1-benzopyran(12), ethyl p-hydroxycinnamate(13), 3-hydroxy-9-methyl-6H-benzo\[c\]chromen-6-one(14), agrimonolide(15), 7-hydroxycoumarin(16), scopoletin(17), isoscutellarein(18), and agrimonolide 6-O-glucoside(19). Among these, the new compounds included one chromene and four meroterpenoid(1-5). The anti-inflammatory activities of the newly identified compounds 1-5 were screened in vitro, showing that the five compounds(1-5) exhibited inhibitory effects on nitric oxide(NO) production in BV2 cells induced by lipopolysaccharide(LPS)/interferon(IFN)-γ, with IC_(50) values ranging from 12.25 to 36.48 μmol·L~(-1).
Anti-Inflammatory Agents/isolation & purification*
;
Mice
;
Animals
;
Rutaceae/chemistry*
;
Drugs, Chinese Herbal/isolation & purification*
;
Macrophages/immunology*
;
Nitric Oxide/immunology*
2.Research progress in alkaloids and their pharmacological effects from plants of Rutaceae.
Qiu-Juan CHEN ; Xiao-Wei SU ; Hui-Ting ZHANG ; Rui LI ; Yu-Ling LIU ; Hua-Feng ZHOU ; Jian SU ; Li-Ni HUO
China Journal of Chinese Materia Medica 2024;49(22):6030-6047
The plants of Rutaceae, with wide distribution in China, have a long history of medicinal use. They contain a wide variety of alkaloids, which include isoquinolines, quinolines, acridones, carbazoles, and indoles. Pharmacological studies have shown that most of these alkaloids have antitumor, anti-inflammatory, antiviral, antidiabetic and other activities. This article summarized 378 alkaloids isolated from plants of Rutaceae and their pharmacological effects, aiming to lay a basis for future drug development and sustainable utilization of plant resources.
Alkaloids/chemistry*
;
Humans
;
Rutaceae/chemistry*
;
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Anti-Inflammatory Agents/chemistry*
3.Six new coumarins from the roots of Toddalia asiatica and their anti-inflammatory activities.
Haoxuan HE ; Niping LI ; Yunqi FAN ; Qian HUANG ; Jianguo SONG ; Lixia LV ; Fen LIU ; Lei WANG ; Qi WANG ; Jihong GU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):852-858
We reported the discovery of six novel coumarins, toddasirins A-F (1-6), each endowed with modified isoprenyl or geranyl side chains, derived from the roots of Toddalia asiatica. Comprehensive structural elucidation was achieved through multispectroscopic analyses, single-crystal X-ray diffraction experiments, and advanced quantum mechanical electronic circular dichroism (ECD) calculations. Furthermore, the anti-inflammatory activity of these compounds was assessed. Notably, compounds 1-3 and 6 demonstrated notable inhibitory effects on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells, with 50% inhibitory concentration (IC50) values of 3.22, 4.78, 8.90, and 4.31 μmol·L-1, respectively.
Mice
;
Animals
;
Coumarins/chemistry*
;
Rutaceae/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
;
Plant Extracts/chemistry*
;
RAW 264.7 Cells
;
Nitric Oxide
;
Molecular Structure
4.Three new coumarins and a new coumarin glycoside from Micromelum integerrimum.
Nan-Kai CAO ; Yue-Mei CHEN ; Si-Si ZHU ; Ke-Wu ZENG ; Ming-Bo ZHAO ; Jun LI ; Peng-Fei TU ; Yong JIANG
Chinese Journal of Natural Medicines (English Ed.) 2021;19(8):621-625
Three new coumarins, integmarins A-C (1-3), and a new coumarin glycoside, integmaside A (4) were isolated from the leaves and stems of Micromelum integerrimum. Their structures were elucidated on the basis of 1D and 2D NMR and MS data, and their absolute configurations were assigned according to the ECD data of the in situ formed transition metal complexes and comparison of experimental and calculated ECD data. Compounds 1 and 2 are two rare coumarins with butyl and propyl moieties at the C-6 position; compound 3 is a novel coumarin with a highly oxidized prenyl group, and compound 4 is a rare bisdihydrofuranocoumarin glycoside.
Coumarins/isolation & purification*
;
Glycosides/isolation & purification*
;
Molecular Structure
;
Plant Leaves/chemistry*
;
Plant Stems/chemistry*
;
Rutaceae/chemistry*
5.Chemical constituents from stems and leaves of Micromelum integerrimum.
Yan LIU ; Zhi-yao WANG ; Wen-jun HE ; Ning-hua TAN ; Zhi-qi YIN
Acta Pharmaceutica Sinica 2015;50(4):475-479
A new benzene derivative microintegerrin C (1) and a new norsesquiterpenoid microintegerrin D (2), along with six known compounds (3-8), were isolated and identified from stems and leaves of Micromelum integerrimum by various chromatographies such as silica gel, Sephadex LH-20, RP-18 column chromatography and HPLC. Their structures were mainly identified based on the spectral data analysis such as 1D-, 2D-NMR and HR-EI-MS. All known compounds were isolated from this plant for the first time.
Chromatography, High Pressure Liquid
;
Plant Leaves
;
chemistry
;
Plant Stems
;
chemistry
;
Rutaceae
;
chemistry
;
Sesquiterpenes
;
isolation & purification
6.Preparation process of rutacarpine-hydroxypropyl-beta-cyclodextrin inclusion complex.
Chun-Lin YAN ; Ji ZHANG ; Yong HOU ; Gui-Ping XUE ; Shu WANG ; Qing-Ya ZHAO
China Journal of Chinese Materia Medica 2014;39(5):828-832
Rutaecarpine (Rut) is a type of indole quinazoline alkaloid exracted from Ruticarpum. Studies showed that Rut has a wide range of pharmacological effects, such as anti-hypertension, anticancer, anti-inflammation, anti-thrombus formation. Currently, many scholars are committed to developing it into a new antihypertensive and anti-inflammatory drug with all new mechanisms. But studies found that Rut is a highly fat-soluble drug with low water and oil solubility. Its high insolubility is the main obstacle in its oral absorption and application, which greatly reduced its bioavailability. Therefore, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was used as the inclusion material to prepare Rut-HP-beta-CD inclusion complex in this experiment, in order to increase its water solubility and bioavailability. In this experiment, the inclusion complex was prepared by the stirring-freeze-dry method. The preparation process was optimized by the orthogonal test, with the inclusion rate as the index, and molar ratio between host and guest molecules, inclusion temperature, time and stirring speed as the impacting factors. Moreover, the inclusion complex was verified by detecting the apparent solubility, thin layer chromatography, microscopic identification, melting point detection and dissolution study. The results showed that under the conditions of the molar ratio between Rut and HP-beta-CD of 1: 1, temperature at 60 degrees C, inclusion time of 4h and stirring speed at 600 r x min(-1), the inclusion rate of Rut-HP-beta-CD reached 91.04%. Therefore, the preparation process of Rut-HP-beta-CD inclusion under the optimum conditions is simple and feasible, with a highest inclusion rate and reproducibility, and could significantly improve Rut's solubility and bioavailability, and provide a reliable experimental basis for its clinical application.
2-Hydroxypropyl-beta-cyclodextrin
;
Alkaloids
;
chemistry
;
Chemistry, Pharmaceutical
;
methods
;
Drug Carriers
;
chemistry
;
Drugs, Chinese Herbal
;
chemistry
;
Rutaceae
;
chemistry
;
Solubility
;
beta-Cyclodextrins
;
chemistry
7.Two new phenylpropanoids from Micromelum integerrimum.
Zhi-Yao WANG ; Wen-Jun HE ; Wen-Bing ZHOU ; Guang-Zhi ZENG ; Zhi-Qi YIN ; Shou-Xun ZHAO ; Ning-Hua TAN
Chinese Journal of Natural Medicines (English Ed.) 2014;12(8):619-622
AIM:
To investigate the chemical and bioactive constituents from the stems and leaves of Micromelum integerrimum.
METHOD:
The chemical constituents were isolated and purified by silica gel, Sephadex LH-20, and HPLC. Their structures were mainly elucidated on the basis of extensive 1D- and 2D-NMR spectroscopy and mass spectrometry. Their cytotoxicity and antimicrobial activities were tested by the SRB and turbidimetric methods, respectively.
RESULTS:
Two new phenylpropanoids and two known coumarins were obtained, and their structures were identified as microintegerrin A (1), microintegerrin B (2), scopoletin (3), and scopolin (4). All of the compounds were tested for their cytotoxicity against three cancer cell lines (HeLa, A549, and BGC-823) and for antimicrobial activity against the fungus Candida albicans and the bacterium Staphylococcus aureus.
CONCLUSION
Two new phenylpropanoids 1 and 2 were isolated and identified from the stems and leaves of M. intgerrimum. None of the compounds showed cytotoxic or antimicrobial activity at the tested concentration of 20 μg·mL(-1).
Candida albicans
;
drug effects
;
Coumarins
;
isolation & purification
;
pharmacology
;
Glucosides
;
isolation & purification
;
pharmacology
;
HeLa Cells
;
Humans
;
Molecular Structure
;
Phenylpropionates
;
chemistry
;
isolation & purification
;
pharmacology
;
Plant Extracts
;
chemistry
;
pharmacology
;
Plant Leaves
;
Plant Stems
;
Rutaceae
;
chemistry
;
Scopoletin
;
isolation & purification
;
pharmacology
;
Staphylococcus aureus
;
drug effects
8.In vivo screening of essential oils of Skimmia laureola leaves for antinociceptive and antipyretic activity.
Naveed MUHAMMAD ; Barkatullah ; Muhammad IBRAR ; Haroon KHAN ; Muhammad SAEED ; Amir Zada KHAN ; Waqar Ahmad KALEEM
Asian Pacific Journal of Tropical Biomedicine 2013;3(3):202-206
OBJECTIVETo study the screening of essential oils of Skimmia laureola leaves (SLO) for acute toxicity, antinociceptive, antipyretic and anticonvulsant activities in various animal models.
METHODSSLO were extracted using modified Clevenger type apparatus. Acute toxicity test was used in mice to observe its safety level. Antinociceptive activity of SLO was evaluated in acetic acid induced writhing and hot plate tests. Yeast induced hyperthermic mice and pentylenetetrazole induced convulsive mice were used for the assessment of its antipyretic and anticonvulsant profile respectively.
RESULTSSubstantial safety was observed for SLO in acute toxicity test. SLO showed a high significant activity in acetic acid induced writhing test in a dose dependent manner with maximum pain attenuation of 68.48% at 200 mg/kg i.p. However, it did not produce any relief in thermal induced pain at test doses. When challenged against pyrexia evoked by yeast, SLO manifested marked amelioration in hyperthermic mice, dose dependently. Maximum anti-hyperthermic activity (75%) was observed at 200 mg/kg i.p. after 4 h of drug administration. Nevertheless, SLO had no effect on seizures control and mortality caused by pentylenetetrazole.
CONCLUSIONSIn vivo studies of SLO showed prominent antinociceptive and antipyretic activities with ample safety profile and thus provided pharmacological base for the traditional uses of the plant in various painful conditions and pyrexia. Additional detail studies are required to ascertain its clinical application.
Analgesics ; pharmacology ; Animals ; Anticonvulsants ; pharmacology ; Antipyretics ; pharmacology ; Body Temperature ; drug effects ; Female ; Male ; Mice ; Oils, Volatile ; pharmacology ; toxicity ; Plant Leaves ; chemistry ; toxicity ; Rutaceae ; chemistry ; Toxicity Tests
9.Ovicidal activity of Atalantia monophylla (L) Correa against Spodoptera litura Fab. (Lepidoptera: Noctuidae).
Kathirvelu BASKAR ; Chellaiah MUTHU ; Gnanaprakasam Antony RAJ ; Selvadurai KINGSLEY ; Savarimuthu IGNACIMUTHU
Asian Pacific Journal of Tropical Biomedicine 2012;2(12):987-991
OBJECTIVETo evaluate the efficacy of Atalantia monophylla (A. monophylla) leaf in different solvent crude extracts and fractions against eggs of Spodoptera litura (S. litura).
METHODSHexane, ethyl acetate and chloroform solvent extracts of A. monophylla leaf and 12 fractions from hexane extract were screened at 5.0%, 2.5%, 1.0% and 0.5% for crude extracts and 1 000, 500, 250 and 125 mg/kg for fractions against the eggs of S. litura for the ovicidal activity. LC50 and LC90 were calculated using probit analysis.
RESULTSHexane crude extract showed maximum ovicidal activity of 61.94% at 5.0% concentration with a correlation value of r (2)=0.81, and least LC50 value of 3.06%. Hexane extract was fractionated using silica gel column chromatography and 12 fractions were obtained. Fraction 9 was active which showed maximum ovicidal activity of 75.61% at 1 000 mg/kg with the LC50 value of 318.65 mg/kg and LC90 value of 1 473.31 mg/kg. In linear regression analysis, significant and high correlation (r (2)=0.81%) was seen between concentration and ovicidal activity of hexane crude extracts and its active fraction.
CONCLUSIONSAs per our knowledge, this is the first report for ovicidal activity of A. monophylla against S. litura, A. monophylla could be used for the management of S. litura and other insect pests.
Animals ; Biological Assay ; Hexanes ; chemistry ; Humans ; Insecticides ; pharmacology ; Lepidoptera ; drug effects ; growth & development ; Plant Extracts ; pharmacology ; Plant Leaves ; chemistry ; Rutaceae ; chemistry ; physiology ; Spodoptera ; drug effects ; growth & development
10.Protective effect of aqueous extract of Feronia elephantum correa leaves on thioacetamide induced liver necrosis in diabetic rats.
Prashant SHARMA ; Subhash L BODHANKAR ; Prasad A THAKURDESAI
Asian Pacific Journal of Tropical Biomedicine 2012;2(9):691-695
OBJECTIVETo evalueate hepatoprotective effects Feronia elephantum (F. elephantum) correa against thioacetamide (TA) induced liver necrosis in diabetic rats.
METHODSMale wistar rats were made diabetic with alloxan (160 mg/kg) on day 0 of the study. They were intoxicated with hepatotoxicant (thioacetamide, 300 mg/kg, ip) on day 9 of study to produce liver necrosis. Effects of 7 day daily once administration (day 2 to day 9) of EF (400 and 800 mg/kg, po) were evaluated on necorosis of liver in terms of mortality, liver volume, liver weight, serum aspartate aminotransferase (AST) and serum alanine transaminase (ALT), and histopathology of liver sections (for signs of necorosis and inflammation) on day-9 of the study. Separate groups of rats with treated only with alloxan (DA control), thioacetamide (TA control) and both (TA+DA control) were maintained.
RESULTSFE significantly lowered the mortality rate and showed improvement in liver function parameters in TA-induced diabetic rats without change in liver weight, volume and serum glucose levels.
CONCLUSIONSFE showed promising activity against TA-induced liver necorsis in diabetic rats and so might be useful for prevention of liver complications in DM.
Animals ; Blood Glucose ; drug effects ; Chemical and Drug Induced Liver Injury ; drug therapy ; mortality ; pathology ; prevention & control ; Diabetes Mellitus, Experimental ; Disease Models, Animal ; Liver Function Tests ; Male ; Necrosis ; Plant Extracts ; administration & dosage ; chemistry ; pharmacology ; Protective Agents ; Rats ; Rutaceae ; chemistry ; Thioacetamide ; adverse effects

Result Analysis
Print
Save
E-mail