1.Comparison on odor components before and after processing of Cervi Cornu Pantotrichum based on electronic nose, HS-GC-MS, and odor activity value.
Xiao-Yu YAO ; Ke SHEN ; Di WU ; Xiao-Fei SUN ; Chun-Qin MAO ; Li FU ; Xiao-Yan WANG ; Hui XIE ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(2):421-431
Processing for deodorization is widely used in the production of animal-derived Chinese medicinal materials. In this study, Heracles Neo ultra-fast gas-phase electronic nose combined with chemometrics was employed to analyze the overall odor difference of Cervi Cornu Pantotrichum(focusing on that derived from Cervus nippon Temminck in this study) before and after processing. The results showed that the electronic nose effectively distinguished between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. HS-GC-MS was used to identify and quantify the volatile components in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum, and 35 and 37 volatile components were detected in the medicinal materials and decoction pieces, respectively. The medicinal materials and decoction pieces contained 28 common volatile components contributing to the odor of Cervi Cornu Pantotrichum. The odor activity value(OAV) of each volatile component was calculated based on the olfactory threshold and relative content. The results showed that there were 17 key odor substances such as isovaleraldehyde, 2-methylbutanal, isobutyraldehyde, hexanal, and methanethiol in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. All of them had bad odor and were the main source of the odor of Cervi Cornu Pantotrichum. The results of principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that there were significant differences in volatile components between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. Based on the thresholds of P<0.05 and Variable Importance in Projection(VIP)>1, 21 differential volatile odor components were screened out. Among them, isopentanol, isovaleraldehyde, 2-methylbutanal, n-nonanal, and dimethylamine were the key differential odor compounds between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. The odor compounds and their relative content reduced, and some flavor substances such as esters were produced after processing with wine, which was the main reason for the reduction of the odor after processing of Cervi Cornu Pantotrichum.
Odorants/analysis*
;
Electronic Nose
;
Gas Chromatography-Mass Spectrometry/methods*
;
Animals
;
Volatile Organic Compounds/analysis*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
2.Antipyretic effects of ethanol extracts of Arisaematis Rhizoma fermented with bile from different sources.
Run ZOU ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(7):1781-1791
This study aims to investigate the antipyretic effects and mechanisms of ethanol extracts from Arisaematis Rhizoma fermented with bile from different sources on a rat model of fever induced by a dry-yeast suspension. The rat model of fever was established by subcutaneous injection of 20% dry-yeast suspension into the rat back. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6) in the serum, as well as prostaglandin E_2(PGE_2) and cyclic adenosine monophosphate(cAMP) in the hypothalamus, were determined by ELISA. Metabolomics analysis was then performed on serum and hypothalamus samples based on UPLC-Q-TOF MS to explore the potential biomarkers and metabolic pathways. The results showed that the body temperatures of rats significantly rose 4 h after modeling. After oral administration of high-dose ethanol extracts of Arisaematis Rhizoma fermented with bovine bile(NCH) and porcine bile(ZCH), the body temperatures of rats declined(P<0.05), and the NCH group showed better antipyretic effect than the ZCH group. Additionally, compared with the model group, the NCH and ZCH groups showed lowered levels of IL-1β, IL-6, TNF-α, PGE_2, and cAMP(P<0.01). The results of serum and hypothalamus metabolomics analysis indicated that both NCH and ZCH exerted antipyretic effects by regulating phenylalanine metabolism, sphingolipid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Collectively, both NCH and ZCH can play an obvious antipyretic role in the rat model of dry yeast-induced fever, and the underlying mechanism might be closely associated with inhibiting inflammation and regulating metabolic disorders. Moreover, NCH demonstrates better antipyretic effect.
Animals
;
Rats
;
Male
;
Fermentation
;
Rats, Sprague-Dawley
;
Rhizome/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Bile/chemistry*
;
Antipyretics/chemistry*
;
Fever/metabolism*
;
Cattle
;
Swine
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ethanol/chemistry*
;
Interleukin-6/blood*
;
Interleukin-1beta/blood*
3.Digital identification of Cervi Cornu Pantotrichum based on HPLC-QTOF-MS~E and Adaboost.
Xiao-Han GUO ; Xian-Rui WANG ; Yu ZHANG ; Ming-Hua LI ; Wen-Guang JING ; Xian-Long CHENG ; Feng WEI
China Journal of Chinese Materia Medica 2025;50(5):1172-1178
Cervi Cornu Pantotrichum is a precious animal-derived Chinese medicinal material, while there are often adulterants derived from animals not specified in the Chinese Pharmacopeia in the market, which disturbs the safety of medication. This study was conducted with the aim of strengthening the quality control of Cervi Cornu Pantotrichum and standardizing the medication. To achieve digital identification of Cervi Cornu Pantotrichum from different sources, a digital identification model was constructed based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UHPLC-QTOF-MS~E) combined with an adaptive boosting algorithm(Adaboost). The young furred antlers of sika deer, red deer, elk, and reindeer were processed and then subjected to polypeptide analysis by UHPLC-QTOF-MS~E. Then, the mass spectral data reflecting the polypeptide information were obtained by digital quantification. Next, the key data were obtained by feature screening based on Gini index, and the digital identification model was constructed by Adaboost. The model was evaluated based on the recall rate, F_1 composite score, and accuracy. Finally, the results of identification based on the constructed digital identification model were validated. The results showed that when the Gini index was used to screen the data of top 100 characteristic polypeptides, the digital identification model based on Adaboost had the best performance, with the recall rate, F_1 composite score, and accuracy not less than 0.953. The validation analysis showed that the accuracy of the identification of the 10 batches of samples was as high as 100.0%. Therefore, based on UHPLC-QTOF-MS~E and Adaboost algorithm, the digital identification of Cervi Cornu Pantotrichum can be realized efficiently and accurately, which can provide reference for the quality control and original animal identification of Cervi Cornu Pantotrichum.
Animals
;
Algorithms
;
Antlers/chemistry*
;
Boosting Machine Learning Algorithms
;
Chromatography, High Pressure Liquid/methods*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Quality Control
;
Reindeer
;
Tandem Mass Spectrometry/methods*
;
Tissue Extracts/analysis*
4.Research on a portable electrical impedance tomography system for evaluating blood compatibility of biomaterials.
Piao PENG ; Huaihao CHEN ; Bo CHE ; Xuan LI ; Chunjian FAN ; Lei LIU ; Teng LUO ; Linhong DENG
Journal of Biomedical Engineering 2025;42(2):219-227
The evaluation of blood compatibility of biomaterials is crucial for ensuring the clinical safety of implantable medical devices. To address the limitations of traditional testing methods in real-time monitoring and electrical property analysis, this study developed a portable electrical impedance tomography (EIT) system. The system uses a 16-electrode design, operates within a frequency range of 1 to 500 kHz, achieves a signal to noise ratio (SNR) of 69.54 dB at 50 kHz, and has a data collection speed of 20 frames per second. Experimental results show that the EIT system developed in this study is highly consistent with a microplate reader ( R 2=0.97) in detecting the hemolytic behavior of industrial-grade titanium (TA3) and titanium alloy-titanium 6 aluminum 4 vanadium (TC4) in anticoagulated bovine blood. Additionally, with the support of a multimodal image fusion Gauss-Newton one-step iterative algorithm, the system can accurately locate and monitor in real-time the dynamic changes in blood permeation and coagulation caused by TC4 in vivo. In conclusion, the EIT system developed in this study provides a new and effective method for evaluating the blood compatibility of biomaterials.
Electric Impedance
;
Animals
;
Tomography/instrumentation*
;
Biocompatible Materials
;
Materials Testing/instrumentation*
;
Cattle
;
Titanium
;
Alloys
;
Prostheses and Implants
5.Preparation and application of bovine CD4 monoclonal antibodies.
Wunjun KONG ; Yueshu ZHU ; Zhengzhong XU ; Chengkun ZHENG ; Xiang CHEN ; Xinan JIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):450-455
Objective To prepare monoclonal antibodies against bovine CD4 and identify their basic biological characteristics. Methods Recombinant bovine CD4 (rHis-BoCD4 and rGST-BoCD4) was successfully expressed and purified by constructing a prokaryotic plasmid of bovine CD4 gene. The bovine CD4 monoclonal antibody was produced using hybridoma technology. The subtype and potency of the monoclonal antibody were identified and analyzed by ELISA, while specificity was analyzed through indirect immunofluorescence assay (IFA) and Western-blot. Results Four hybridoma cell lines, namely, 1H4, 6A10, 3F9 and 4G10, stably secreting monoclonal antibodies against BoCD4 were successfully obtained. The subclasses of the monoclonal antibodies subclass 6A10 was IgG2b and the rest of the monoclonal antibodies were of IgM type. Western-blot results showed that the four anti-bovine CD4 mAb strains were able to specifically bind to the bovine CD4 protein expressed in vitro. Indirect immunofluorescence assay showed that four monoclonal antibodies were able to specifically recognize the natural bovine CD4 protein. Flow cytometry assay showed that 3F9 was best to recognize bovine natural CD4 molecules. Conclusion Four monoclonal antibody strains with high specificity to natural bovine CD4 protein were successfully prepared, which lays the foundation for the subsequent studies on the function of bovine CD4 and diagnosis and treatment of bovine T-lymphocyte diseases.
Animals
;
Antibodies, Monoclonal/isolation & purification*
;
Cattle
;
CD4 Antigens/genetics*
;
Hybridomas/immunology*
;
Antibody Specificity/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Enzyme-Linked Immunosorbent Assay
;
Fluorescent Antibody Technique, Indirect
6.Probable Molecular Targeting of Inhibitory Effect of Carvacrol-Loaded Bovine Serum Albumin Nanoparticles on Human Breast Adenocarcinoma Cells.
Pouria KHODAVANDI ; Neda KARAMI ; Alireza KHODAVANDI ; Fahimeh ALIZADEH ; Esmaeel Panahi KOKHDAN ; Ahmad ZAHERI
Chinese journal of integrative medicine 2025;31(4):336-346
OBJECTIVE:
To entrap carvacrol (CAR) in bovine serum albumin nanoparticles (BSANPs) to form CAR-loaded BSANPs (CAR@BSANPs) and to explore the anti-cancer effects in breast adenocarcinoma cells (MCF-7 cells) treated with CAR and CAR@BSANPs.
METHODS:
A desolvation method was used to synthesize BSANPs and CAR@BSANPs. The BSANPs and CAR@BSANPs were characterized by several physicochemical methods, including visual observation, high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. MCF-7 cells were used and analyzed after 24 h of exposure to CAR and CAR@BSANPs at half-maximal inhibitory concentration. The anti-proliferative, apoptotic, reactive oxygen species (ROS), and nitric oxide (NO) scavenging activity as well as gene expression analysis were investigated by the cell viability assay, phase-contrast microscopy, 2',7'-dichlorofluorescein-diacetate assay, Griess-Illosvoy colorimetric assay, and quantitative real-time polymerase chain reaction, respectively.
RESULTS:
CAR and CAR@BSANPs showed anti-proliferative, apoptotic, ROS generation, and NO scavenging effects on MCF-7 cells. Expression profile of B-cell lymphoma 2-like 11 (BCL2L11), vascular endothelial growth factor A (VEGFA), hypoxia inducible factor factor-1α (HIF1A), BCL2L11/apoptosis regulator (BAX), and BCL2L11/Bcl2 homologous antagonist/killer 1 (BAK1) ratios revealed downregulated genes; and BAX, BAK1, and CASP8 were upregulated by CAR and CAR@BSANPs treatment. In vitro anticancer assays of the CAR and CAR@BSANPs showed that CAR@BSANPs demonstrated higher therapeutic efficacy in the MCF-7 cells than CAR.
CONCLUSIONS
CAR and CAR@BSANPs affect gene expression and may subsequently reduce the growth and proliferation of the MCF-7 cells. Molecular targeting of regulatory genes of the MCF-7 cells with CAR and CAR@BSANPs may be an effective therapeutic strategy against breast cancer.
Humans
;
Cymenes
;
Nanoparticles/ultrastructure*
;
MCF-7 Cells
;
Breast Neoplasms/genetics*
;
Apoptosis/drug effects*
;
Serum Albumin, Bovine/chemistry*
;
Monoterpenes/therapeutic use*
;
Adenocarcinoma/genetics*
;
Cell Proliferation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Female
;
Cell Survival/drug effects*
;
Animals
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Nitric Oxide/metabolism*
;
Cattle
7.Soil conditioners affect rhizospheric bacterial communities of Cabernet Sauvignon.
Shuaicheng AN ; Jiangtao BI ; Gong LI ; Ruifan MAO ; Peng LIU ; Zhibing HUI ; Xiaoqin SU
Chinese Journal of Biotechnology 2025;41(6):2432-2450
Three soil conditioners were prepared from granulated food waste and decomposed cattle manure combined with desulfurization gypsum, coal gangue, and maifanite, respectively. Field trials were conducted in the saline field growing Cabernet Sauvignon. The effects of soil conditioners on rhizospheric bacterial communities were studied, with the aim of providing a scientific basis for soil amelioration and restoration. Five treatments were designed, including the control (T1), conventional fertilization (T2), reduced chemical fertilization+organic matter-based soil conditioner with calcium additives (T3), reduced chemical fertilization+organic matter-based soil conditioner with silica additives (T4), and reduced chemical fertilization+organic matter-based soil conditioner with magnesium additives (T5), each with three replications. The results indicated that soil conditioners improved the rhizospheric nutrients, yield, and quality of grape (P<0.05), increased relative abundance of Proteobacteria by 17.32%-23.37%, decreased relative abundance of unidentified_Bacteria and Acidobacteriota by 4.22%-28.42% and 20.88%-35.81%, respectively. The bacterial community composition and diversity were different between treatments. Function analysis showed that the expression levels of the genes involved in chromosome and protein synthesis, mRNA biosynthesis, and glyoxylate and dicarboxylate metabolism were up-regulated in the treatments with soil conditioners. The correlation analysis revealed that multiple environmental factors affected the alpha diversity of rhizospheric bacterial communities, and some bacterial taxa were closely related to the grape yield and quality. It is concluded that soil conditioners can effectively alter rhizosphere nutrient levels and bacterial community structures and functions. T5 treatment outperforms other treatments in improving the physico-chemical and biological characteristics of rhizosphere, and the yield, and quality of grape. It has potential for application, and provides an important basis for development of new-type soil conditioners.
Soil Microbiology
;
Rhizosphere
;
Soil/chemistry*
;
Vitis/microbiology*
;
Fertilizers
;
Bacteria/growth & development*
;
Cattle
;
Manure
;
Animals
8.Construction of a Sox17 activation vector based on the CRISPR/dCas9 system and its validation in sheep embryonic stem cells.
Wenli LÜ ; Hua YANG ; Hui XU ; Yanli ZHANG
Chinese Journal of Biotechnology 2025;41(7):2707-2718
The CRISPR/dCas9 system is a gene editing tool that has proven to be highly efficient and precise. By utilizing transcriptional activators, such as VP64, p65, and Rta, the system can effectively and stably activate target genes. Sox17, a transcription factor belonging to the SOX family, plays a crucial role in the differentiation of the germ layers and the determination of cell fates during the early stages of embryonic development. Sheep embryonic stem cells (sESCs) are characterized by their capacity for self-renewal and multidirectional differentiation, serving as a significant in vitro model for studying the mechanisms of cell differentiation during early embryonic development. However, the importing of exogenous genes into sESCs is challenging due to their unique growth characteristics. The objective of this study was to investigate the conditions necessary for successfully activating Sox17 in sESCs. To this end, we employed the CRISPR/dCas9 system along with liposome transfection, lentivirus invasion, and electroporation to activate Sox17 in sESCs. The expression of Sox17 was then determined by fluorescence quantitative PCR, on the basis of which the performance of different transfection methods was compared. The results indicated that the electroporation group had the best transfection effect and the highest Sox17 expression among the three transfection methods. The efficient and stable gene activation protocol will provide a reference for embryonic stem cell research in other species, especially livestock animals, and lay the foundation for the subsequent study of gene function and realization of precise cell fate regulation by regulating gene expression in sheep embryonic stem cells.
Animals
;
CRISPR-Cas Systems/genetics*
;
Sheep
;
SOXF Transcription Factors/genetics*
;
Embryonic Stem Cells/cytology*
;
Genetic Vectors/genetics*
;
Cell Differentiation/genetics*
;
Transfection
;
Gene Editing/methods*
10.Advances in the anti-host interferon immune response of bluetongue virus.
Qisha LI ; Xuyan CAI ; Shimei LUO ; Yunyi CHEN ; Huashan YI ; Xianping MA
Chinese Journal of Biotechnology 2024;40(12):4439-4451
Bluetongue virus (BTV) usually infects sheep, cattle, deer and other domesticated and wild ruminants through the bite of the vector insects, Culicoide, causing bluetongue (BT). BT in subtropical and even temperate regions poses a serious threat to the development and international trade of the livestock industry. This article introduced the structure and cellular invasion, and summarized the mechanisms of anti-BTV immune response of host cells and antagonism of host cell innate immune response by the non-structural proteins (e.g., NS3 and NS4) and structural proteins (e.g., VP3 and VP4) of BTV. This review provided a basis for understanding the antagonism mechanisms of BTV against the interferon (IFN) immune response in the host cell and the pathogenesis of BTV as well as for developing novel vaccines against this virus.
Bluetongue virus/immunology*
;
Animals
;
Bluetongue/prevention & control*
;
Immunity, Innate
;
Interferons/immunology*
;
Sheep
;
Viral Nonstructural Proteins/immunology*
;
Cattle

Result Analysis
Print
Save
E-mail