1.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Targeted inhibition of Gus-expressing Enterococcus faecalis to promote intestinal stem cell and epithelial renovation contributes to the relief of irinotecan chemotoxicity by dehydrodiisoeugenol.
Ruiyang GAO ; Bei YUE ; Cheng LV ; Xiaolong GENG ; Zhilun YU ; Hao WANG ; Beibei ZHANG ; Fangbin AI ; Ziyi WANG ; Donghui LIU ; Zhengtao WANG ; Kaixian CHEN ; Wei DOU
Acta Pharmaceutica Sinica B 2024;14(12):5286-5304
Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to β-glucuronidase (Gus) converting 10-O-glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing. The anti-mucositis effect of DDIE is gut microbiota-dependent. Analysis of microbiome profiling data from clinical patients and CPT11-induced mucositis mice reveals a strong correlation between CPT11 chemotoxicity and Gus-expressing bacteria, particularly Enterococcus faecalis (E. faecalis). DDIE counters CPT11-induced augmentation of E. faecalis, leading to decreased intestinal Gus and SN38 levels. The Partial Least Squares Path Model (PLS-PM) algorithm initially links E. faecalis to dysregulated epithelial renovation. This is further validated in a 3D intestinal organoid model, in which both SN38 and E. faecalis hinder the formation and differentiation of organoids. Interestingly, colonization of E. faecalis exacerbates CPT11-induced mucositis and disturbs epithelial differentiation. Our study unveils a microbiota-driven, epithelial reconstruction-mediated action of DDIE against mucositis, proposing the 'Gus bacteria-host-irinotecan axis' as a promising target for mitigating CPT11 chemotoxicity.
4.Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins.
Jiang XU ; Shuai GUO ; Xianmei YIN ; Mingqian LI ; He SU ; Xuejiao LIAO ; Qiushi LI ; Liang LE ; Shiyu CHEN ; Baosheng LIAO ; Haoyu HU ; Juan LEI ; Yingjie ZHU ; Xiaohui QIU ; Lu LUO ; Jun CHEN ; Ruiyang CHENG ; Zhenzhan CHANG ; Han ZHANG ; Nicholas Chieh WU ; Yiming GUO ; Dianyun HOU ; Jin PEI ; Jihai GAO ; Yan HUA ; Zhihai HUANG ; Shilin CHEN
Acta Pharmaceutica Sinica B 2023;13(5):2234-2249
The many-banded krait, Bungarus multicinctus, has been recorded as the animal resource of JinQianBaiHuaShe in the Chinese Pharmacopoeia. Characterization of its venoms classified chief phyla of modern animal neurotoxins. However, the evolutionary origin and diversification of its neurotoxins as well as biosynthesis of its active compounds remain largely unknown due to the lack of its high-quality genome. Here, we present the 1.58 Gbp genome of B. multicinctus assembled into 18 chromosomes with contig/scaffold N50 of 7.53 Mbp/149.8 Mbp. Major bungarotoxin-coding genes were clustered within genome by family and found to be associated with ancient local duplications. The truncation of glycosylphosphatidylinositol anchor in the 3'-terminal of a LY6E paralog released modern three-finger toxins (3FTxs) from membrane tethering before the Colubroidea divergence. Subsequent expansion and mutations diversified and recruited these 3FTxs. After the cobra/krait divergence, the modern unit-B of β-bungarotoxin emerged with an extra cysteine residue. A subsequent point substitution in unit-A enabled the β-bungarotoxin covalent linkage. The B. multicinctus gene expression, chromatin topological organization, and histone modification characteristics were featured by transcriptome, proteome, chromatin conformation capture sequencing, and ChIP-seq. The results highlighted that venom production was under a sophisticated regulation. Our findings provide new insights into snake neurotoxin research, meanwhile will facilitate antivenom development, toxin-driven drug discovery and the quality control of JinQianBaiHuaShe.
5.Clinical application and research progress of single-hole laparoscopy
Feng MA ; Ruiyang SUO ; Le GAO ; Yu LI ; Xiaogang ZHANG ; Bo WANG ; Zheng WU ; Yi LÜ
Journal of Xi'an Jiaotong University(Medical Sciences) 2021;42(3):339-344
The minimally invasive surgery is the mainstream of the development of surgery, and the transformation of surgery from traditional open surgery to endoscopic surgery has brought great benefits to patients. However, surgeons have never stopped their exploration from porous laparoscopy to single hole or even endoscopic surgery via the natural cavity, and looking for a more minimally invasive way of surgery has always been the pursuit of clinicians. As a minimally invasive technique, single-hole laparoscopy is becoming more and more widely used in clinic, and achievements and difficulties will guide the development direction of further research in the future. This paper reviews the clinical application of single-hole laparoscopy in recent years and the status quo of its development.
6.Identification of Codonopsis Radix and Its Adulterants Using the ITS/ITS2 Barcodes
Sha ZHAO ; Tianyi XIN ; Dianyun HOU ; Xiaohui PANG ; Ruiyang CHEN ; Jianping GAO
World Science and Technology-Modernization of Traditional Chinese Medicine 2013;(3):421-428
The ITS/ITS2 barcodes were used to simply and effectively identify Codonopsis Radix and its adulter-ants. In this study, ITS (internal transcribed spacer of unclear ribosomal DNA) regions were amplified using PCR (polymerase chain reaction) from thirty-three samples of Codonopsis Radix and ITS2 regions were obtained from the ITS sequences using the hidden Markov model (HMMer)-based annotation methods. The sequences of ITS/ITS2 regions were aligned and the genetic distances were computed by MEGA5.0. Species identification efficiency of ITS/ITS2 sequences were evaluated using BLAST1 and nearest distance methods. The results indicated that The sequences lengths of ITS regions of Codonopsis Radix were 654-655 bp, and the lengths of ITS2 regions were 239 bp. The intraspecific genetic distances among Codonopsis Radix were obviously lower than the interspecific genetic distance between Codonopsis Radix and its adulterants. Therefore, ITS/ITS2 regions can stably and accu-rately distinguish Codonopsis Radix and its adulterants.
7.Prepare and clinical application of HCV genotyping oligochip
Yingtang GAO ; Ruiyang CHEN ; Wenqin SONG ; Chengbin CHEN ; Zhili QI ; Li JING ; Zhichao KAN
Chinese Journal of Laboratory Medicine 2003;0(10):-
Objective To study the preparation of hepatitis C viruses (HCV) genotyping oligochip and its application in the detection of 76 hepatitis C patients.Methods Oligonucleotide probes and primers were designed in the 5’noncoding region and core region of HCV. The HCV typing chip was prepared by spotting the modified probes onto nylon membrane. Products of the second PCR were labeled with Dig-dUTP. Furthermore, 6 PCR products were sequenced.Results Using the chip,15 subtypes in 11 types of HCV were analyzed.Results of hybridization indicates that 76 hepatitis C patients were all positive and 20 health people were negative.Among 76 patients, 64 cases were 1b type, 11 cases were 2a type and 1 case was 3a type. Mix infection was not found. The results obtained by sequencing 6 samples and chip arraying were the same.Conclusion The HCV genotyping chip could be used in detecting serum HCV RNA and analyzing its genotypes.

Result Analysis
Print
Save
E-mail