1.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
2.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
3.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
4.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
5.Predicting Postoperative Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine Using Interpretable Radiomics Models
Siyuan QIN ; Ruomu QU ; Ke LIU ; Ruixin YAN ; Weili ZHAO ; Jun XU ; Enlong ZHANG ; Feifei ZHOU ; Ning LANG
Neurospine 2025;22(1):144-156
Objective:
This study investigates the potential of radiomics to predict postoperative progression of ossification of the posterior longitudinal ligament (OPLL) after posterior cervical spine surgery.
Methods:
This retrospective study included 473 patients diagnosed with OPLL at Peking University Third Hospital between October 2006 and September 2022. Patients underwent posterior spinal surgery and had at least 2 computed tomography (CT) examinations spaced at least 1 year apart. OPLL progression was defined as an annual growth rate exceeding 7.5%. Radiomic features were extracted from preoperative CT images of the OPLL lesions, followed by feature selection using correlation coefficient analysis and least absolute shrinkage and selection operator, and dimensionality reduction using principal component analysis. Univariable analysis identified significant clinical variables for constructing the clinical model. Logistic regression models, including the Rad-score model, clinical model, and combined model, were developed to predict OPLL progression.
Results:
Of the 473 patients, 191 (40.4%) experienced OPLL progression. On the testing set, the combined model, which incorporated the Rad-score and clinical variables (area under the receiver operating characteristic curve [AUC] = 0.751), outperformed both the radiomics-only model (AUC = 0.693) and the clinical model (AUC = 0.620). Calibration curves demonstrated good agreement between predicted probabilities and observed outcomes, and decision curve analysis confirmed the clinical utility of the combined model. SHAP (SHapley Additive exPlanations) analysis indicated that the Rad-score and age were key contributors to the model’s predictions, enhancing clinical interpretability.
Conclusion
Radiomics, combined with clinical variables, provides a valuable predictive tool for assessing the risk of postoperative progression in cervical OPLL, supporting more personalized treatment strategies. Prospective, multicenter validation is needed to confirm the utility of the model in broader clinical settings.
6.Comprehensive Brain-wide Mapping of Afferent and Efferent Nuclei Associated with the Heart in the Mouse.
Haiying LIU ; Xin HUANG ; Ruixin XIA ; Xin ZHAO ; Zimeng LI ; Qian LIU ; Congye LI ; Honghui MAO ; Wenting WANG ; Shengxi WU
Neuroscience Bulletin 2025;41(10):1743-1760
Normal heart function depends on complex regulation by the brain, and abnormalities in the brain‒heart axis affect various diseases, such as myocardial infarction and anxiety disorders. However, systematic tracking of the brain regions associated with the input and output of the heart is lacking. In this study, we injected retrograde transsynaptic pseudorabies virus (PRV) and anterograde transsynaptic herpes simplex virus (HSV) into the left ventricular wall of mice to identify the whole-brain regions associated with the input to and output from the heart. We successfully detected PRV and HSV expression in at least 170 brain subregions in both male and female mice. Sex differences were discovered mainly in the hypothalamus and medulla, with male mice exhibiting greater correlation and hierarchical clustering than female mice, indicating reduced similarity and increased modularity of virus expression patterns in male mice. Further graph theory and multiple linear regression analysis of different injection timelines revealed that hub regions of PRV had highly similar clusters, with different brain levels, suggesting a top-down, hierarchically transmitted neural control pattern of the heart. Hub regions of HSV had scattered clusters, with brain regions gathered in the cortex and brainstem, suggesting a bottom-up, leapfrog, multipoint neural sensing pattern of the heart. Both patterns contain many hub brain regions that have been previously overlooked in brain‒heart axis studies. These results provide brain targets for future research and will lead to deeper insight into the brain mechanisms involved in specific heart conditions.
Animals
;
Male
;
Female
;
Heart/physiology*
;
Mice
;
Herpesvirus 1, Suid
;
Brain/physiology*
;
Mice, Inbred C57BL
;
Brain Mapping
;
Efferent Pathways/physiology*
;
Afferent Pathways/physiology*
;
Simplexvirus
;
Sex Characteristics
7.Multidrug resistance reversal effect of tenacissoside I through impeding EGFR methylation mediated by PRMT1 inhibition.
Donghui LIU ; Qian WANG ; Ruixue ZHANG ; Ruixin SU ; Jiaxin ZHANG ; Shanshan LIU ; Huiying LI ; Zhesheng CHEN ; Yan ZHANG ; Dexin KONG ; Yuling QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1092-1103
Cancer multidrug resistance (MDR) impairs the therapeutic efficacy of various chemotherapeutics. Novel approaches, particularly the development of MDR reversal agents, are critically needed to address this challenge. This study demonstrates that tenacissoside I (TI), a compound isolated from Marsdenia tenacissima (Roxb.) Wight et Arn, traditionally used in clinical practice as an ethnic medicine for cancer treatment, exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells. TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin (DOX) and paclitaxel (PAC) by downregulating ABCB1 expression and reducing ABCB1 drug transport function. Mechanistically, protein arginine methyltransferase 1 (PRMT1), whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues, was differentially expressed in TI-treated SW620/AD300 cells. SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine (aDMA) and enhanced PRMT1-EGFR interaction compared to their parental cells. Moreover, TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR, PRMT1-EGFR interaction, and EGFR downstream signaling in SW620/AD300 and KBV200 cells. These effects were significantly reversed by PRMT1 overexpression. Additionally, TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities. This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR, suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.
Humans
;
Protein-Arginine N-Methyltransferases/antagonists & inhibitors*
;
Drug Resistance, Neoplasm/drug effects*
;
ErbB Receptors/genetics*
;
Animals
;
Cell Line, Tumor
;
Drug Resistance, Multiple/drug effects*
;
Methylation/drug effects*
;
Saponins/administration & dosage*
;
Mice
;
Mice, Nude
;
Mice, Inbred BALB C
;
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Doxorubicin/pharmacology*
;
Paclitaxel/pharmacology*
;
Female
;
Repressor Proteins
8.Metal-organic Framework Immobilized Enzyme and Its Application in Screening of Enzyme Inhibitors of Traditional Chinese Medicine:A Review
Haipeng LIU ; Yong ZHANG ; Jing WANG ; Tianci LYU ; Ruixin DING ; Guihua GAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):256-264
Enzymes are widely used in chemical and pharmaceutical industries because of their advantages of high efficiency and specificity. However, the shortcomings of the free enzymes, such as poor stability and difficulty in recycling, limit their application. Therefore, the immobilization and application of enzymes have become one of the research hotspots. The selection of the immobilization carriers is a critical step in the process of enzyme immobilization. Metal-organic frameworks(MOFs), a kind of porous materials, are formed by the coordination of metal ions or metal clusters with organic ligands. As an emerging immobilization carrier, its advantages such as high porosity, strong stability, and surface modifiability make it ideal for immobilized enzyme carriers. By immobilizing the free enzyme on MOFs, the above mentioned deficiencies of the free enzymes can be effectively solved, which greatly broaden the applicable condition. Ligand fishing is a method to find receptor-specific ligands from complex components, which has the advantages of high efficiency, simple sample pretreatment and high specificity. The MOF-enzyme complex formed by enzyme immobilization can act as a "fishing rod" for ligand fishing, which can screen out the targets from the complex system of components. The complex chemical composition and various active ingredients of traditional Chinese medicine(TCM) make the ligand fishing technology to play a big role in the screening of enzyme inhibitors from TCM. And the screened enzyme inhibitors are expected to be further developed into the lead compounds with good efficacy and low adverse effects, so the immobilized enzymes of MOFs have a wide application in the screening of active ingredients from TCM. Based on this, this paper summarized the methods of immobilized enzymes of MOFs in recent years, analyzed the characteristics, advantages and disadvantages of each method, and summarized the laws of preparation conditions and mechanisms. Meanwhile, the application and future development of immobilized enzymes of MOFs in the field of enzyme inhibitor screening from TCM were also summarized and prospected, with a view to providing a reference for the development of natural ingredients and the modernization of TCM.
9.Application of melt electrowriting technology in tissue engineering
Yu JIANG ; Feng HE ; Huan LIU ; Ruixin WU
Chinese Journal of Tissue Engineering Research 2024;28(10):1606-1612
BACKGROUND:With computer-aided design,melt electrowriting technology can precisely construct 3D tissue engineering scaffolds with specific morphology,which has attracted increasing attention in tissue engineering. OBJECTIVE:To elaborate on the progress of melt electrowriting technology in tissue engineering in recent years. METHODS:PubMed and CNKI were used to retrieve articles about applications of melt electrowriting technology in tissue engineering.The search time was from March 2008 to February 2023.The search terms were"melt electrowriting,melt electrospinning,electrospinning,tissue engineering,scaffold,regeneration"in English and"melt electrowriting,electrospinning,tissue engineering"in Chinese.A preliminary screening of articles was performed by reading the titles and abstracts.Finally,69 articles were included for review. RESULTS AND CONCLUSION:(1)Melt electrowriting technology can achieve precise layer-by-layer deposition of fibers compared to traditional electrospinning technology,which better simulates the complex structure of natural tissues.Compared to other 3D printing technologies,smaller-diameter fibers can be prepared by melt electrowriting technology,resulting in highly ordered porous structures.(2)By combining with other scaffold preparation techniques or materials,such as fused deposition modeling,solution electrospinning technology,and hydrogel,melt electrowriting technology shows great potential in preparing complex tissue engineering scaffolds,which provides certain possibilities for achieving complex tissue regeneration.(3)The regeneration of complex tissues often involves blood vessels,nerves,and soft and hard tissues at the same time.The regeneration of blood vessels and nerves is of great significance to realize the physiological reconstruction of tissues.However,soft and hard tissues have certain difficulties to realize the coordinated regeneration of both due to their different biological and mechanical properties.Melt electrowriting technology has certain advantages in the field of bionic scaffolds due to its good biocompatibility,the ability to prepare multi-scale scaffolds and high porosity.
10.Mechanical Performance of Porous Titanium Alloy Scaffolds with Different Cell Structures
Mengchao SUN ; Yang LUO ; Jie LIU ; Lilan GAO ; Ruixin LI ; Yansong TAN ; Chunqiu ZHANG
Journal of Medical Biomechanics 2024;39(1):69-75
Objective To investigate the influence of different cell structures on the static and dynamic mechanical performance of porous titanium alloy scaffolds,and to provide a theoretical mechanical basis for the application of scaffolds in the repair of mandibular bone defects.Methods Porous titanium alloy scaffolds with diamond,cubic,and cross-sectional cubic cell structures were manufactured using three-dimensional printing technology.Uniaxial compression tests and ratcheting fatigue with compression load tests were conducted to analyze the static and dynamic mechanical performances of scaffolds with different cell structures.Results The elastic moduli of the diamond cell,cross-sectional cubic cell,and cubic cell scaffolds were 1.17,0.566,and 0.322 GPa,respectively,and the yield strengths were 71.8,65.1,and 31.8 MPa,respectively.After reaching the stable stage,the ratcheting strains of the cross-sectional cubic,diamond,and cubic cell scaffolds were 3.3%,4.0%,and 4.5%,respectively.The ratcheting strain increased with increasing average stress,stress amplitude,and peak holding time,and decreased with increasing loading rate.Conclusions The evaluation results of the static mechanical performance showed that the diamond cell scaffold was the best,followed by the cross-sectional cubic cell scaffold and the cubic cell scaffold.The evaluation results of the dynamic mechanical performance showed that the cross-sectional cubic cell scaffold performed the best,followed by the diamond cell scaffold,whereas the cubic cell scaffold performed the worst.The fatigue performance of the scaffold is affected by the loading conditions.These results provide new insights for scaffold construction for the repair of mandibular bone defects and provide an experimental basis for further clinical applications of this scaffold technology.

Result Analysis
Print
Save
E-mail