1.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
2.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
3.Dynamic gait parameters reveal long-term compensatory characteristics in knee joint function recovery following anterior cruciate ligament reconstruction: A retrospective cohort study.
Qitai LIN ; Zehao LI ; Meiming LI ; Yongsheng MA ; Wenming YANG ; Yugang XING ; Yang LIU ; Ruifeng LIANG ; Yixuan ZHANG ; Ruipeng ZHAO ; Wangping DUAN ; Pengcui LI ; Xiaochun WEI
Chinese Medical Journal 2025;138(22):3016-3018
4.Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.
Yiwei GONG ; Zheng ZHANG ; Yuanzhi YANG ; Shuo ZHANG ; Ruifeng ZHENG ; Xin LI ; Xiaoyun QIU ; Yang ZHENG ; Shuang WANG ; Wenyu LIU ; Fan FEI ; Heming CHENG ; Yi WANG ; Dong ZHOU ; Kejie HUANG ; Zhong CHEN ; Cenglin XU
Neuroscience Bulletin 2025;41(5):790-804
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis. However, it still lacks effective predictors and approaches. Here, a classical model of pharmacoresistant temporal lobe epilepsy (TLE) was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats. Ictal electroencephalograms (EEGs) recorded before phenytoin treatment were analyzed. Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats, a convolutional neural network predictive model was constructed to predict pharmacoresistance, and achieved 78% prediction accuracy. We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power, which was verified in seizure EEGs from pharmacoresistant TLE patients. Prospectively, therapies targeting the subiculum in those predicted as "pharmacoresistant" individual rats significantly reduced the subsequent occurrence of pharmacoresistance. These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model. This may be of translational importance for the precise management of pharmacoresistant TLE.
Epilepsy, Temporal Lobe/diagnosis*
;
Animals
;
Drug Resistant Epilepsy/drug therapy*
;
Electroencephalography/methods*
;
Rats
;
Anticonvulsants/pharmacology*
;
Neural Networks, Computer
;
Male
;
Humans
;
Phenytoin/pharmacology*
;
Adult
;
Disease Models, Animal
;
Female
;
Rats, Sprague-Dawley
;
Young Adult
;
Convolutional Neural Networks
5.Effects of Yiqi Huoxue Jiedu formula on the gut microbiota in elderly patients with pulmonary-derived sepsis based on 16S rDNA sequencing: a multicenter prospective randomized double-blind controlled trial.
Rui CHEN ; Jiahua LAI ; Minlin ZHONG ; Ruifeng ZENG ; Fang LAI ; Yi YU ; Yuntao LIU ; Xiaotu XI ; Jun LI
Chinese Critical Care Medicine 2025;37(5):416-423
OBJECTIVE:
To investigate the effects of the combined Yiqi Huoxue Jiedu formula (YHJF) on intestinal microbiota in elderly patients with pulmonary-derived sepsis and identify potential microbial targets.
METHODS:
A prospective randomized double-blind controlled trial was conducted. Elderly patients with pulmonary infection-induced sepsis admitted to the emergency department of Guangdong Provincial Hospital of Traditional Chinese Medicine (TCM), intensive care unit (ICU) of Fangcun Hospital, and ICU of Daxuecheng Hospital, from November 2020 to October 2021 were enrolled and randomized into two groups. Both groups received conventional Western medicine treatment. The observation group additionally received YHJF (composed of 15 g of Panax ginseng, 9 g of Panax notoginseng, and 3 g of Rheum palmatum, dissolved in 50 mL warm water) orally or via nasogastric tube twice daily for 7 days; while the control group received a placebo. Clinical data and fresh fecal samples were collected before treatment and on days 5-7 of treatment. Intestinal microbiota diversity and structure were analyzed via 16S rDNA sequencing and bioinformatics [α diversity, β diversity, and linear discriminant analysis effect size (LEfSe)].
RESULTS:
Fifty-five patients were included (29 in the control group, 26 in the observation group). There were no significantly differences in gender, age, comorbidities, and baseline sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation II (APACHE II), acute gastrointestinal injury (AGI) classification score, and gastrointestinal failure (GIF) score between the two groups. Compared to the control group, the observation group showed significantly lower serum procalcitonin, APACHE II score, and greater reduction in GIF score by day 7. Thirty fecal samples were collected pre-treatment (baseline group), 29 post-treatment from the control group, and 26 from the observation group. Gut microbiota α diversity analysis revealed that Simpson index in the observation group and control group were significantly decreased compared to the baseline group [0.75 (0.53, 0.91), 0.81 (0.32, 0.91) vs. 0.88 (0.87, 0.89), both P < 0.05], but there was no significantly difference between the observation group and the control group. There were no significantly differences in Chao1, Ace, and Shannon indices among three groups. β diversity analysis indicated that distinct microbiota structures among three groups (R2 = 0.096, P = 0.026). Species difference analysis showed that, at the phylum level, Firmicutes (53.69%), Actinobacteria (16.23%), Proteobacteria (15.39%), and Bacteroidetes (9.57%) dominated, with no significant intergroup differences. At the genus level, 38 taxa showed significant differences. Compared to the control group, the observation group exhibited increased Erysipelatoclostridium (P = 0.014) and Faecalibacterium (P = 0.013), and decreased Bacteroides (P = 0.009), Bilophila (P = 0.005), Eggerthella (P = 0.002), and Collinsella (P = 0.043). LEfSe analysis highlighted Lactobacillus salivarius, Erysipelatoclostridium, Collinsella, Cloacibacillus, and Bacteroides as key discriminators.
CONCLUSION
YHJF combined with conventional therapy alters intestinal microbiota structure in patients with elderly pulmonary-derived sepsis, with Bacteroides, Erysipelatoclostridium, and Collinsella identified as potential microbial targets.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Double-Blind Method
;
Sepsis/drug therapy*
;
Aged
;
Prospective Studies
;
RNA, Ribosomal, 16S/genetics*
;
Male
;
Female
;
Panax notoginseng
;
Rheum
6.Analysis of in Vitro Activity and Mechanism of Dunhuang Yifang Daxiefei Decoction on Pneumonia Based on Chemical Bioinformatics
Jia LIN ; Xiaojie JIN ; Chenghao LI ; Ruifeng WANG ; Yehu HOU ; Yixi ZHANG ; Hao LIU ; Min ZHANG ; Juan YAO ; Jintian LI ; Yongqi LIU
Chinese Journal of Modern Applied Pharmacy 2024;41(7):871-886
OBJECTIVE
To explore the effectiveness, potential mechanism and compatibility characteristics of efficacy groups of Dunhuang medical prescription Daxiefei decoction in preventing and treating pneumonia based on chemical bioinformatics method.
METHODS
To study the effect of Daxiefei decoction freeze-dried powder solution on the proliferation activity of lung epithelial cells through cell experiments. Daxiefei decoction was divided into three groups: clearing away heat group, resolving phlegm group, and nourishing Yin group according to its efficacy characteristics. The chemical components of Daxiefei decoction were obtained by TCMSP database and literature search, and the targets were predicted in Swiss Target Prediction database. Pneumonia disease targets were obtained by DrugBank, TTD, Genecards and DisGeNET databases. STRING database and Cytoscape were used to construct the intersection target interaction network and "drug-component-target- pathway" network and DAVID database was used for KEGG pathway enrichment analysis. The network was used to analyze the scientific connotation of the compatibility of efficacy groups. Furthermore, molecular docking was used to evaluate the target-compound affinity and molecular dynamics was used to explore the dynamic molecular mechanism.
RESULTS
Cell experiments showed that Daxiefei decoction can maintain the proliferation of lung epithelial cells, reverse the decrease of mitochondrial activity induced by LPS and reduce apoptosis. Complex network analysis showed that the pathways enriched by the three functional groups contained in Daxiefei decoction were mainly distributed in two modules: inflammation regulation and reducing airway mucus hypersecretion. Each module was connected by a common target gene and had its own focus. The results of molecular docking showed that the components quercetin, baicalein, isorhamnetin etc. might be the effective multi-target components of Daxiefei decoction. SRC, EGFR, PPARA etc. had good affinity with each potential active component, which might be a potential target of Daxiefei decoction for preventing and treating pneumonia. Molecular dynamics simulation showed that the potential active component quercetin formed stable intermolecular interactions with SRC.
CONCLUSION
This study initially reveal the material basis and molecular mechanism of Daxiefei decoction in the prevention and treatment of pneumonia. It also explores the scientific connotation of Daxiefei decoction in the prevention and treatment of pneumonia with different efficacy groups, and its modern development and clinical application provide chemical bioinformatics basis.
7.Study on the Material Basis of Guiqi Baizhu Prescription Inhibiting the Proliferation of Uveal Melanoma Cells Based on Traditional Chinese Medicine Chemical Bioinformatics
WANG Ruifeng ; JIN Xiaojie ; LIU Hao ; LI Chenghao ; ZHANG Min ; Li Mi ; LI Haotian ; ZHANG Yu ; MA Huanhuan ; ZHANG Yuemei
Chinese Journal of Modern Applied Pharmacy 2024;41(14):1900-1912
ABATRACT
OBJECTIVE To utilize the pharmacophore model-molecular docking combined with the virtual screening strategy of free energy calculation and the chemical bioinformatics method of traditional Chinese medicine in cell biology experiments to investigate the components of Guiqi Baizhu prescription that target phosphatidylinositol 3-kinase(PI3K) and inhibit the proliferation of uveal melanoma(UM) cells.
METHODS The pharmacophore model of PI3K inhibitor was constructed, and the compounds of Guiqi Baizhu prescription were virtual screened. The components that fit the pharmacophore model were calculated by molecular docking and binding free energy, and the potential inhibitory components were selected for biological experimental evaluation. The effects of potential inhibitory components on UM cell proliferation were detected by CCK-8 and clonal formation assay. Flow cytometry was used to detect the cell cycle and apoptosis of UM cells. The mitochondrial membrane potential of UM cells was detected using JC-10 staining. The expressions of PI3K and downstream pathway proteins were detected by Western blotting.RESULTS The pharmacophore model included 2 hydrogen bond receptors, 2 aromatic ring centers, and exclusion volumes. The results of the CCK-8 experiment showed that quercetin, tangerine, and nobiletin at concentrations of 10, 20, 40, 80 μmol·L−1, and cyrtin at concentrations of 20, 40, 80 μmol·L−1, were able to inhibit the proliferation of UM cells. The clonal formation experiment showed that quercetin, tangerine, nobiletin, and morusin, at different concentrations, could significantly inhibit the clonal proliferation of UM cells. Flow cytometry showed that UM cells were arrested in the G0/G1 phase by tangeretin and quercetin, while UM cells were arrested in the G2/M phase by nobiletin and morusin. The results of JC-10 staining showed that quercetin, nobiletin, tangeretin, and morusin could reduce the mitochondrial membrane potential of UM cells. Western blotting results showed that 4 compounds could target PI3K, but their downstream pathways were different.CONCLUSION Based on the method of chemical bioinformatics in traditional Chinese medicine, this study explores the material basis for the inhibition of UM cell proliferation by the Guiqi Baizhu prescription. It also provides insights for the modern development of traditional Chinese medicine prescription.
8.Analysis of the current situation of medical safety in the department of emergency of Chinese Medicine Hospitals and suggestions for reform
Ruifeng ZENG ; Fang LAI ; Ye YE ; Xiaotu XI ; Guanghua TANG ; Shiyi LIU ; Banghan DING ; Jun LI
Chinese Journal of Integrated Traditional and Western Medicine in Intensive and Critical Care 2024;31(1):82-85
As the window of the hospital,the emergency department's medical quality determines the medical quality of the entire hospital.Emergency medical safety is the key to hospital construction.However,due to problems such as staffing and medical technology in the department of emergency of Chinese Medicine Hospitals,the development of medical quality is highly unbalanced.Aiming at the medical safety problems in the department of emergency of Chinese Medicine Hospitals in our country,the department of emergency of the Second Affiliated Hospital of Guangzhou University of Chinese Medicine analyzed the current situation at home and abroad,examined the causes of medical errors,and put forward suggestions for the reform of medical safety in the department of emergency of Chinese Medicine Hospitals.It is recommended to effectively reduce medical errors through a series of reform measures such as hardware transformation and upgrading,standardization of standard procedures,establishing a sound communication mechanism,and creating a safety culture.
9.Chebulagic acid regulates LPS-induced inflammatory response in dairy cow endom-etrial tissue through MAPK/NF-κB pathway
Ying YANG ; Xinyu LIU ; Feifan ZHAO ; Wenrui GUO ; Ruifeng GAO
Chinese Journal of Veterinary Science 2024;44(10):2251-2259
To investigate the role of chebulagic acid(CA)in regulating lipopolysaccharide(LPS)-in-duced inflammatory response in endometrial tissue of dairy cows,and to provide new ideas for the treatment and new drug development of endometritis in dairy cows.The endometrial tissues of dairy cows were isolated and cultured in vitro,stimulated with 1 mg/L LPS for 1 h and then co-cultured with CA(12.5,25.0,50.0,100.0 mg/L).Then the endometrial tissues of different treat-ment groups were collected for experiments.The protein secretion and gene expression levels of TNF-α,IL-6 and IL-1β were detected by ELISA and real-time fluorescence quantitative PCR.HE staining was used to observe the degree of endometrial tissue damage.The expressions of high mobility protein 1(HMGB-1)and hyaluronidase binding protein 2(HABP-2)were detected by immunofluorescence.The phosphorylation levels of ERK,p65 and IκBα were detected by Western blot.The results showed that the protein secretion levels of TNF-α at 6,24 h and IL-6 at 6,12 and 24 h,and the gene expression levels of IL-1β and IL-6 at 6,9,and 12 h and TNF-α at 6 h were sig-nificantly down-regulated after CA treatment with the LPS-induced endometrial tissue inflammation response model of dairy cows.HE staining showed that compared with the LPS group,the LPS+CA group had some improvements,the degree of epithelial cell exfoliation was reduced,the struc-ture of glands and blood vessels was relatively complete,the degree of inflammatory cell infiltra-tion was reduced,and there was no obvious necrosis or hemorrhage.The expression of HMGB-1 and HABP-2 in LPS+CA group was also significantly down-regulated.The phosphorylation levels of ERK,IκBα and p65 in the LPS+CA group were significantly decreased.In conclusion,CA can reduce LPS-induced inflammation in the endometrial tissue of dairy cows by inhibiting the activa-tion of MAPK and NF-κB pathways and down-regulating the expression of inflammatory factors in the uterine tissue.It is concluded that CA may be a potential therapeutic agent for endometritis in dairy cows and deserves further research and development.
10.Multicenter evaluation of the diagnostic efficacy of jaundice color card for neonatal hyperbilirubinemia
Guochang XUE ; Huali ZHANG ; Xuexing DING ; Fu XIONG ; Yanhong LIU ; Hui PENG ; Changlin WANG ; Yi ZHAO ; Huili YAN ; Mingxing REN ; Chaoying MA ; Hanming LU ; Yanli LI ; Ruifeng MENG ; Lingjun XIE ; Na CHEN ; Xiufang CHENG ; Jiaojiao WANG ; Xiaohong XIN ; Ruifen WANG ; Qi JIANG ; Yong ZHANG ; Guijuan LIANG ; Yuanzheng LI ; Jianing KANG ; Huimin ZHANG ; Yinying ZHANG ; Yuan YUAN ; Yawen LI ; Yinglin SU ; Junping LIU ; Shengjie DUAN ; Qingsheng LIU ; Jing WEI
Chinese Journal of Pediatrics 2024;62(6):535-541
Objective:To evaluate the diagnostic efficacy and practicality of the Jaundice color card (JCard) as a screening tool for neonatal jaundice.Methods:Following the standards for reporting of diagnostic accuracy studies (STARD) statement, a multicenter prospective study was conducted in 9 hospitals in China from October 2019 to September 2021. A total of 845 newborns who were admitted to the hospital or outpatient department for liver function testing due to their own diseases. The inclusion criteria were a gestational age of ≥35 weeks, a birth weight of ≥2 000 g, and an age of ≤28 days. The neonate′s parents used the JCard to measure jaundice at the neonate′s cheek. Within 2 hours of the JCard measurement, transcutaneous bilirubin (TcB) was measured with a JH20-1B device and total serum bilirubin (TSB) was detected. The Pearson′s correlation analysis, Bland-Altman plots and the receiver operating characteristic (ROC) curve were used for statistic analysis.Results:Out of the 854 newborns, 445 were male and 409 were female; 46 were born at 35-36 weeks of gestational age and 808 were born at ≥37 weeks of gestational age. Additionally, 432 cases were aged 0-3 days, 236 cases were aged 4-7 days, and 186 cases were aged 8-28 days. The TSB level was (227.4±89.6) μmol/L, with a range of 23.7-717.0 μmol/L. The JCard level was (221.4±77.0) μmol/L and the TcB level was (252.5±76.0) μmol/L. Both the JCard and TcB values showed good correlation ( r=0.77 and 0.80, respectively) and agreements (96.0% (820/854) and 95.2% (813/854) of samples fell within the 95% limits of agreement, respectively) with TSB. The JCard value of 12 had a sensitivity of 0.93 and specificity of 0.75 for identifying a TSB ≥205.2?μmol/L, and a sensitivity of 1.00 and specificity of 0.35 for identifying a TSB ≥342.0?μmol/L. The TcB value of 205.2?μmol/L had a sensitivity of 0.97 and specificity of 0.60 for identifying TSB levels of 205.2 μmol/L, and a sensitivity of 1.00 and specificity of 0.26 for identifying TSB levels of 342.0 μmol/L. The areas under the ROC curve (AUC) of JCard for identifying TSB levels of 153.9, 205.2, 256.5, and 342.0 μmol/L were 0.96, 0.92, 0.83, and 0.83, respectively. The AUC of TcB were 0.94, 0.91, 0.86, and 0.87, respectively. There were both no significant differences between the AUC of JCard and TcB in identifying TSB levels of 153.9 and 205.2 μmol/L (both P>0.05). However, the AUC of JCard were both lower than those of TcB in identifying TSB levels of 256.5 and 342.0 μmol/L (both P<0.05). Conclusions:JCard can be used to classify different levels of bilirubin, but its diagnostic efficacy decreases with increasing bilirubin levels. When TSB level are ≤205.2 μmol/L, its diagnostic efficacy is equivalent to that of the JH20-1B. To prevent the misdiagnosis of severe jaundice, it is recommended that parents use a low JCard score, such as 12, to identify severe hyperbilirubinemia (TSB ≥342.0 μmol/L).


Result Analysis
Print
Save
E-mail