1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
4.Effect and Mechanism of Angelicae Sinensis Radix-Polygonati Rhizoma Herb Pair in Treatment of Simple Obesity
Wenjing LI ; Zhongyu WANG ; Yongxin HUANG ; Jingjing XU ; Ying DING ; You WU ; Zhiwei QI ; Ruifeng YANG ; Xiaotong YANG ; Lili WU ; Lingling QIN ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):70-79
ObjectiveTo preliminarily explore the active components and target pathways of Angelicae Sinensis Radix-Polygonati Rhizoma (ASR-PR) herb pair in the treatment of simple obesity through network pharmacology and molecular docking, and to verify and investigate its mechanism of action via animal experiments. MethodsThe chemical constituents and targets of ASR and PR were predicted using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Targets related to simple obesity were identified by retrieving the GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), and DisGeNET databases. The intersection of drug and disease targets was used to construct an active component-target network using Cytoscape software. This network was imported into the STRING database to construct a protein-protein interaction (PPI) network, and topological analysis was conducted to identify core genes. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and mapping were performed using the DAVID database and the Microbioinformatics platform. AutoDock 1.5.7 software was used to perform molecular docking between the top five active components and core targets. An animal model of simple obesity was established by feeding C57BL/6J mice a high-fat diet. The mice were administered ASR (2.06 g·kg-1), PR (2.06 g·kg-1), or ASR-PR (4.11 g·kg-1) for 10 weeks, while the model group received an equal volume of purified water by gavage. After the administration period, the mice were sacrificed to measure body fat weight and serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Hematoxylin-eosin (HE) staining was used to observe histopathological sections of liver and adipose tissue. Serum levels of leptin, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA expression levels of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3) in liver tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsNetwork pharmacology and molecular docking results indicated that the treatment of simple obesity by ASR-PR may involve the regulation of protein expression of core targets EGFR and STAT3 by its main components MOL009760 (Siberian glycoside A_qt), MOL003889 (methyl protodioscin_qt), MOL009766 (resveratrol), MOL006331 (4′,5-dihydroxyflavone), and MOL004941 (baicalin), thereby modulating the PI3K/Akt and JAK/STAT signaling pathways. The animal experiment results showed that compared with the normal group, the model group had significantly increased body weight, body fat weight, and serum levels of TG, TC, TNF-α, IL-6, and leptin (P<0.01). EGFR mRNA expression was significantly elevated (P<0.05), while STAT3 mRNA expression was significantly decreased (P<0.01). Histological analysis revealed disordered hepatic architecture in the model group, with pronounced lipid vacuoles, cytoplasmic loosening, lipid accumulation, and steatosis. Adipocytes in white adipose tissue (WAT) and brown adipose tissue (BAT) of the model group exhibited markedly increased diameters, reduced cell counts per unit area, and irregular morphology. Compared with the model group, the ASR-PR group significantly reduced body weight, body fat weight, serum TC, IL-6, TNF-α, leptin levels, and EGFR mRNA expression (P<0.01). TG levels were also significantly decreased (P<0.05), while STAT3 mRNA expression was significantly increased (P<0.01). Histopathological improvements included reduced size and number of hepatic lipid vacuoles and restoration of liver cell morphology toward that of the normal group. The diameter of adipocytes significantly decreased, and the number of adipocytes per unit area increased. ConclusionASR-PR may regulate the expression of key target proteins such as EGFR and STAT3 via its core active components, modulate the PI3K/Akt and JAK/STAT signaling pathways, repair damaged liver and adipose tissues, and thereby alleviate the progression of obesity in mice.
5.Endomitosis: a new cell fate in the cell cycle leading to polyploidy in megakaryocytes and hepatocytes.
Qi-Hua HUA ; Xuechun ZHANG ; Ruifeng TIAN ; Zhigang SHE ; Zan HUANG
Journal of Zhejiang University. Science. B 2025;26(9):843-862
Megakaryocytes and hepatocytes are unique cells in mammals that undergo polyploidization through endomitosis in terminal differentiation. Many polyploidization regulators and underlying mechanisms have been reported, most of which are tightly coupled with development, organogenesis, and cell differentiation. However, the nature of endomitosis, which involves successful entry into and exit from mitosis without complete cytokinesis, has not yet been fully elucidated. We highlight that endomitosis is a new cell fate in the cell cycle, and tetraploidy is a critical stage at the bifurcation of cell fate decision. This review summarizes the recent research progress in this area and provides novel insights into how cells manipulate mitosis toward endomitosis. Endomitotic cells can evade the tetraploidy restrictions and proceed to multiple rounds of the cell cycle. This knowledge not only deepens our understanding of endomitosis as a fundamental biological process but also offers new perspectives on the physiological and pathophysiological implications of polyploidization.
Hepatocytes/physiology*
;
Megakaryocytes/physiology*
;
Humans
;
Polyploidy
;
Animals
;
Cell Cycle/physiology*
;
Cell Differentiation
;
Mitosis/physiology*
6.Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.
Yiwei GONG ; Zheng ZHANG ; Yuanzhi YANG ; Shuo ZHANG ; Ruifeng ZHENG ; Xin LI ; Xiaoyun QIU ; Yang ZHENG ; Shuang WANG ; Wenyu LIU ; Fan FEI ; Heming CHENG ; Yi WANG ; Dong ZHOU ; Kejie HUANG ; Zhong CHEN ; Cenglin XU
Neuroscience Bulletin 2025;41(5):790-804
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis. However, it still lacks effective predictors and approaches. Here, a classical model of pharmacoresistant temporal lobe epilepsy (TLE) was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats. Ictal electroencephalograms (EEGs) recorded before phenytoin treatment were analyzed. Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats, a convolutional neural network predictive model was constructed to predict pharmacoresistance, and achieved 78% prediction accuracy. We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power, which was verified in seizure EEGs from pharmacoresistant TLE patients. Prospectively, therapies targeting the subiculum in those predicted as "pharmacoresistant" individual rats significantly reduced the subsequent occurrence of pharmacoresistance. These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model. This may be of translational importance for the precise management of pharmacoresistant TLE.
Epilepsy, Temporal Lobe/diagnosis*
;
Animals
;
Drug Resistant Epilepsy/drug therapy*
;
Electroencephalography/methods*
;
Rats
;
Anticonvulsants/pharmacology*
;
Neural Networks, Computer
;
Male
;
Humans
;
Phenytoin/pharmacology*
;
Adult
;
Disease Models, Animal
;
Female
;
Rats, Sprague-Dawley
;
Young Adult
;
Convolutional Neural Networks
7.Efficacy and safety of oliceridine for treatment of moderate to severe pain after surgery with general anesthesia: a prospective, randomized, double-blinded, multicenter, positive-controlled clinical trial
Gong CHEN ; Wen OUYANG ; Ruping DAI ; Xiaoling HU ; Huajing GUO ; Haitao JIANG ; Zhi-Ping WANG ; Xiaoqing CHAI ; Chunhui WANG ; Zhongyuan XIA ; Ailin LUO ; Qiang WANG ; Ruifeng ZENG ; Yanjuan HUANG ; Zhibin ZHAO ; Saiying WANG
Chinese Journal of Anesthesiology 2024;44(2):135-139
Objective:To evaluate the efficacy and safety of oliceridine for treatment of moderate to severe pain after surgery with general anesthesia in patients.Methods:The patients with moderate to severe pain (numeric pain rating scale ≥4) after abdominal surgery with general anesthesia from 14 hospitals between July 6, 2021 and November 9, 2021 were included in this study. The patients were assigned to either experiment group or control group using a random number table method. Experiment group received oliceridine, while control group received morphine, and both groups were treated with a loading dose plus patient-controlled analgesia and supplemental doses for 24 h. The primary efficacy endpoint was the drug response rate within 24 h after giving the loading dose. Secondary efficacy endpoints included early (within 1 h after giving the loading dose) drug response rates and use of rescue medication. Safety endpoints encompassed the development of respiratory depression and other adverse reactions during treatment.Results:After randomization, both the full analysis set and safety analysis set comprised 180 cases, with 92 in experiment group and 88 in control group. The per-protocol set included 170 cases, with 86 in experiment group and 84 in control group. There were no statistically significant differences between the two groups in 24-h drug response rates, rescue analgesia rates, respiratory depression, and incidence of other adverse reactions ( P>0.05). The analysis of full analysis set showed that the experiment group had a higher drug response rate at 5-30 min after giving the loading dose compared to control group ( P<0.05). The per-protocol set analysis indicated that experiment group had a higher drug response rate at 5-15 min after giving the loading dose than control group ( P<0.05). Conclusions:When used for treatment of moderate to severe pain after surgery with general anesthesia in patients, oliceridine provides comparable analgesic efficacy to morphine, with a faster onset.
8.Mechanism of Tongfu Lifei decoction inhibiting the programmed death-1/programmed death-ligand 1 signaling pathway in THP-1 cells by regulating microRNA-146a
Bo LYU ; Lan LI ; Ruifeng HUANG ; Xiahui ZHOU ; Lipeng HAN
Chinese Critical Care Medicine 2024;36(10):1038-1043
Objective:To explore the protective effect and mechanism of Tongfu Lifei decoction (TFL) on human monocytic leukemia cell THP-1 induced by lipopolysaccharide (LPS).Methods:① THP-1 cells were cultured in vitro, and incubated with 1 mg/L LPS for 18 hours to construct an in vitro THP-1 cell inflammation model. Other THP-1 cells were taken as blank control group. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-α(TNF-α) and interleukin-6 (IL-6) secreted by cells. ② THP-1 cells were divided into seven groups and treated with 0, 0.005, 0.01, 0.02, 0.04, 0.08, and 0.16 mL/mL TFL for 24 hours (added different dosages of TFL solution per milliliter of culture medium, with a crude drug content of 1 kg/L). The cell survival rate was detected using methyl thiazolyl tetrazolium (MTT) colorimetric method, and the intervention dosage of TFL for its non-toxic effect on THP-1 cells was screened. ③ Another THP-1 cells were divide into inflammatory model group and 0.01, 0.02, and 0.04 mL/mL TFL groups according to the intervention dosage of TFL screened by MTT colorimetry. After 24 hours of intervention, the levels of TNF-α and IL-6 secreted by cells were measured using ELISA. Western blotting was used to detect the expressions of programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) signaling pathway proteins in cells. Real time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expressions of microRNAs (miR-146a, miR-146b, miR-155) in cells. ④ The maximum non-toxic concentration of TFL (0.04 mL/mL) on the THP-1 cell was selected as the intervention dose. THP-1 cells were divided into inflammation model group, TFL group, TFL+miR-146a inhibitor group, TFL+miR-146b inhibitor group, and TFL+miR-155 inhibitor group. The inflammation model group was not given any drug intervention. The other inhibitor groups were added 100 nmol/L corresponding inhibitor. After 24 hours of intervention, the levels of TNF-α and IL-6 secreted by cells were measured using ELISA. Western blotting was used to detect the expressions of PD-1/PD-L1 signaling pathway proteins in cells. Results:① Compared with the blank control group, the levels of TNF-α and IL-6 secreted by cells in the inflammatory model group were significantly increased, indicating the successful construction of the THP-1 inflammatory cell model in vitro. ② 0-0.04 mL/mL TFL had no toxic effect on THP-1 cells. However, the survival rates of cells in the 0.08 mL/mL and 0.16 mL/mL TFL groups were significantly lower than those in the inflammation model group, indicating that TFL dosages exceeding 0.04 mL/mL had toxic effects on THP-1 cells. ③ Compared with the inflammation model group, 0.01 mL/mL TFL had no significant effect on the levels of TNF-α and IL-6 secreted by THP-1 cells, while intervention with 0.02 mL/mL and 0.04 mL/mL TFL significantly reduced the levels of TNF-α and IL-6 secreted by cells [TNF-α(ng/L): 95.89±8.55, 70.73±11.70 vs. 137.10±7.19, IL-6 (ng/L): 23.03±2.55, 16.58±1.72 vs. 32.60±2.55, all P < 0.01]. Compared with the inflammation model group, the expressions of PD-1/PD-L1 signaling pathway proteins in THP-1 cells in different dosages of TFL groups were significantly reduced, and showed a certain dosage dependence. The expressions of the pathway proteins in the 0.04 mL/mL TFL group were significantly lower than those in the inflammation model group [PD-1 protein (PD-1/β-actin): 0.28±0.04 vs. 1.00±0.10, PD-L1 protein (PD-L1/β-actin): 0.54±0.05 vs. 1.00±0.08, phosphoinositide 3-kinase (PI3K) protein (PI3K/β-actin): 0.28±0.03 vs. 1.00±0.08, phosphorylated protein kinase B (p-Akt) protein (p-Akt/Akt): 0.38±0.04 vs. 1.00±0.10, all P < 0.01]. Compared with the inflammation model group, the expression of miR-146a in THP-1 cells in the 0.01, 0.02, and 0.04 mL/mL TFL groups was significantly reduced (2 -ΔΔCt: 0.46±0.11, 0.31±0.13, 0.23±0.14 vs. 1.01±0.18, all P < 0.01), while there was no significant change in the expressions of miR-146b and miR-155. ④ Compared with the inflammation model group, the TFL group showed a significant decrease in the levels of TNF-α and IL-6 secreted by THP-1 cells. The miR-146a inhibitor could significantly reverse the inhibitory effect of TFL on inflammatory factors, and the difference was statistically significant as compared with the TFL group [TNF-α (ng/L): 138.55±10.30 vs. 72.33±10.59, IL-6 (ng/L): 31.35±3.98 vs. 15.75±3.76, both P < 0.01]. Compared with the inflammation model group, the expressions of PD-1/PD-L1 signaling pathway proteins in THP-1 cells in the TFL group were significantly reduced. The expressions of pathway proteins in cells in the TFL+miR-146a inhibitor group were significantly higher than those in the TFL group [PD-1 protein (PD-1/β-actin): 0.85±0.09 vs. 0.37±0.04, PD-L1 protein (PD-L1/β-actin): 0.83±0.08 vs. 0.55±0.06, PI3K protein (PI3K/β-actin): 0.85±0.09 vs. 0.63±0.06, p-Akt protein (p-Akt/Akt): 0.98±0.10 vs. 0.75±0.07, all P < 0.05]. Conclusion:TFL regulates the expression of miR-146a to inhibit the PD-1/PD-L1 signaling pathway in THP-1 cells, regulates the immune barrier of sepsis induced in cell inflammation model in vitro, and thus protects LPS induced THP-1 cells.
9.Expert consensus on clinical practice in perioperative nursing for elderly patients with hip fracture (version 2023)
Mi SONG ; Dan KONG ; Yuan GAO ; Yaping CHEN ; Xiaohua CHEN ; Yi CUI ; Junqin DING ; Leling FENG ; Lili FENG ; Jinli GUO ; Yun HAN ; Jing HU ; Sanlian HU ; Tianwen HUANG ; Yu JIA ; Yan JIN ; Xiangyan KONG ; Haiyan LI ; Hui LI ; Lunlan LI ; Shuixia LI ; Hua LIN ; Juan LIU ; Xuemei LU ; Ning NING ; Lingli PENG ; Lingyun SHI ; Changli WAN ; Jie WANG ; Qi WANG ; Yi WANG ; Ruifeng XU ; Ying YING ; Ping ZHANG ; Shijun ZHANG ; Wenjuan ZHOU
Chinese Journal of Trauma 2023;39(3):214-222
Hip fracture is considered as the most severe osteoporotic fracture characterized by high disability and mortality in the elderly. Improved surgical techniques and multidisciplinary team play an active role in alleviating prognosis, which places higher demands on perioperative nursing. Dysfunction, complications, and secondary impact of anaesthesia and surgery add more difficulties to clinical nursing. Besides, there still lack clinical practices in perioperative nursing for elderly patients with hip fracture in China. In this context, led by the Orthopedic Nursing Committee of Chinese Nursing Association, the Expert consensus on clinical practice in perioperative nursing for elderly patients with hip fracture ( version 2023) is developed based on the evidence-based medicine. This consensus provides 11 recommendations on elderly patients with hip fracture from aspects of perioperative health education, condition monitoring and inspection, complication risk assessment and prevention, and rehabilitation, in order to provide guiding advices for clinical practice, improve the quality of nursing and ameliorate the prognosis of elderly patients with hip fracture.
10.Comparative study on the theme of traditional Chinese medicine policies among different provinces of China
Shuang YANG ; Ruifeng LI ; Xinying AN ; Zhihong XIAO ; Hongyun WANG ; Yan WANG ; Huan GOU ; Peng GAO ; Youliang HUANG
China Pharmacy 2023;34(6):653-659
OBJECTIVE To clarify the core content of traditional Chinese medicine (TCM) policy in the provinces of China, so as to provide reference for optimizing the structure of the policy system of traditional Chinese medicine in China and assisting the inheritance and innovation of TCM industry in various regions. METHODS The websites of directly affiliated organs in 31 provinces, excluding Hong Kong, Macao and Taiwan, were retrieved to collect the TCM policies released from 2000 to 2021. The importance of keywords in the TCM policies of each province was measured based on term frequency-inverse documentation frequency (TF-IDF) keyword extraction method, and the similarities and differences were analyzed among TCM policies. RESULTS & CONCLUSIONS A total of 99 documents related to TCM policies of various provinces were obtained in this study, most of which were released after 2016. The theme of national TCM policy covered four aspects: building TCM talent team, perfecting TCM service system, strengthening TCM resource management and promoting TCM industry innovation. The TF-IDF values of “medical institutions”“traditional Chinese medicine”“medical treatment” were higher than other keywords in each province, indicating that the provinces paid more attention to the construction of TCM service system and the management of TCM resources than other aspects. Anhui and Jiangsu, Beijing and Henan, Hubei and Jilin, Hubei and Tianjin, and Hubei and Yunnan had the more degree of similarity in TCM policies, which all contained 16 of the same keywords. Therefore, the above regions should be encouraged to strengthen exchanges and cooperation and realize mutual promotion and joint development. Among all the keywords whose importance ratio was greater than 0.2,“ Tibetan medicine” was unique to Qinghai and Tibet,“ disease type” was unique to Guangdong, and the TF-IDF value of “supervision and management” in Beijing was higher, indicating that the emphasis of TCM policy formulation in different provinces was various. Meanwhile, the top 10 keywords of TF- IDF value in all provinces did not have words related to financial input, and the TF-IDF values of “informatization” in most provinces did not rank at the top. It is suggested to increase financial input or encourage social financing, and add “Internet+new business” in the field of TCM.

Result Analysis
Print
Save
E-mail