1.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
2.Advantages of Chinese Medicines for Diabetic Retinopathy and Mechanisms: Focused on Inflammation and Oxidative Stress.
Li-Shuo DONG ; Chong-Xiang XUE ; Jia-Qi GAO ; Yue HU ; Ze-Zheng KANG ; A-Ru SUN ; Jia-Rui LI ; Xiao-Lin TONG ; Xiu-Ge WANG ; Xiu-Yang LI
Chinese journal of integrative medicine 2025;31(11):1046-1055
3.Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support.
Dengying YAN ; Qiguang ZHENG ; Kai CHANG ; Rui HUA ; Yiming LIU ; Jingyan XUE ; Zixin SHU ; Yunhui HU ; Pengcheng YANG ; Yu WEI ; Jidong LANG ; Haibin YU ; Xiaodong LI ; Runshun ZHANG ; Wenjia WANG ; Baoyan LIU ; Xuezhong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(11):1310-1328
Traditional Chinese medicine (TCM) represents a paradigmatic approach to personalized medicine, developed through the systematic accumulation and refinement of clinical empirical data over more than 2000 years, and now encompasses large-scale electronic medical records (EMR) and experimental molecular data. Artificial intelligence (AI) has demonstrated its utility in medicine through the development of various expert systems (e.g., MYCIN) since the 1970s. With the emergence of deep learning and large language models (LLMs), AI's potential in medicine shows considerable promise. Consequently, the integration of AI and TCM from both clinical and scientific perspectives presents a fundamental and promising research direction. This survey provides an insightful overview of TCM AI research, summarizing related research tasks from three perspectives: systems-level biological mechanism elucidation, real-world clinical evidence inference, and personalized clinical decision support. The review highlights representative AI methodologies alongside their applications in both TCM scientific inquiry and clinical practice. To critically assess the current state of the field, this work identifies major challenges and opportunities that constrain the development of robust research capabilities-particularly in the mechanistic understanding of TCM syndromes and herbal formulations, novel drug discovery, and the delivery of high-quality, patient-centered clinical care. The findings underscore that future advancements in AI-driven TCM research will rely on the development of high-quality, large-scale data repositories; the construction of comprehensive and domain-specific knowledge graphs (KGs); deeper insights into the biological mechanisms underpinning clinical efficacy; rigorous causal inference frameworks; and intelligent, personalized decision support systems.
Medicine, Chinese Traditional/methods*
;
Artificial Intelligence
;
Humans
;
Precision Medicine
;
Decision Support Systems, Clinical
4.Identifying High-Risk Areas for Type 2 Diabetes Mellitus Mortality in Guangdong, China: Spatiotemporal Clustering and Socioenvironmental Determinants.
Hai Ming LUO ; Wen Biao HU ; Yan Jun XU ; Xue Yan ZHENG ; Qun HE ; Lu LYU ; Rui Lin MENG ; Xiao Jun XU ; Fei ZOU
Biomedical and Environmental Sciences 2025;38(5):585-597
OBJECTIVE:
This study aimed to identify high-risk areas for type 2 diabetes mellitus (T2DM) mortality to provide relevant evidence for interventions in emerging economies.
METHODS:
Empirical Bayesian Kriging and a discrete Poisson space-time scan statistic were applied to identify the spatiotemporal clusters of T2DM mortality. The relationships between economic factors, air pollutants, and the mortality risk of T2DM were assessed using regression analysis and the Poisson Log-linear Model.
RESULTS:
A coastal district in East Guangdong, China, had the highest risk (Relative Risk [RR] = 4.58, P < 0.01), followed by the 10 coastal districts/counties in West Guangdong, China (RR = 2.88, P < 0.01). The coastal county in the Pearl River Delta, China (RR = 2.24, P < 0.01), had the third-highest risk. The remaining risk areas were two coastal counties in East Guangdong, 16 districts/counties in the Pearl River Delta, and two counties in North Guangdong, China. Mortality due to T2DM was associated with gross domestic product per capita (GDP per capita). In pilot assessments, T2DM mortality was significantly associated with carbon monoxide.
CONCLUSION
High mortality from T2DM occurred in the coastal areas of East and West Guangdong, especially where the economy was progressing towards the upper middle-income level.
Diabetes Mellitus, Type 2/epidemiology*
;
China/epidemiology*
;
Humans
;
Risk Factors
;
Spatio-Temporal Analysis
;
Air Pollutants/analysis*
;
Socioeconomic Factors
;
Bayes Theorem
;
Female
;
Male
;
Middle Aged
5.The mechanism of PTGES3/HSP90 in the medial prefrontal cortex regulating obesity-related cognitive impairment
Jinyan Wang ; Jia Hu ; Rui Hu ; Chunxia Huang ; Qi Xue
Acta Universitatis Medicinalis Anhui 2025;60(4):596-603
Objective :
To investigate the mechanism of prostaglandin E synthase 3(PTGES3)/heat shock protein 90(HSP90) in the medial prefrontal cortex regulating obesity-related cognitive dysfunction.
Methods:
This study consisted of clinical trials and animal experiments. In part one, obese patients scheduled for bariatric surgery, and healthy adults matching gender and age were recruited at the same time to reach 10 cases in each group. The cognitive level was assessed with trail making test part A(TMT-A) and victoria stroop tests(VST). Four-dimensional data-independent acquisition(4D-DIA) was used to screen the proteome changes in peripheral blood. In part two, forty SPF healthy male C57BL/6J mice were randomly divided into four groups: normal diet group(ND group), high fat diet induced obesity group(DIO group), DIO supplemented with the control virus group(DIO+Scramble group) and DIO supplemented with the interfering virus group(DIO+shPTGES3 group). The Morris water maze test was conducted to evaluate the cognitive behavior changes of the four groups of mice. The immunofluorescence staining was performed to detect the expression of PTGES3 and HSP90 in the medial prefrontal cortex and the activation of ionized calcium binding adapter molecule 1(IBA1)-labeled microglia.
Results:
In the case-control study, the cognitive function of obese patients significantly decreased, and the expression of PTGES3 in peripheral blood significantly increased, while the level of PTGES3 was negatively correlated with cognitive function. In animal experiments, compared with ND group, DIO group had significantly prolonged time reaching the target platform, otherwise, the residence time in the target quadrant was shortened in the Morris water maze test. Simultaneously, there were significant increase in the expression of PTGES3 and HSP90, and the activation of IBA1 in the medial prefrontal cortex. Compared with DIO+Scramble group, mice in the DIO+shPTGES3 group spent less time reaching the target platform, and stayed longer in the target quadrant. The expression and co-localization levels of PTGES3 and HSP90 in medial prefrontal cortex significantly decreased. The activation level of microglia cells was also attenuated by PTGES3 interference.
Conclusion
Obesity-related cognitive dysfunction may be attributed to PTGES3/HSP90 in the medial prefrontal cortex by mediating neural inflammation.
6.Effect and Mechanism of Total Saponins from Panax Japonicus on White Adipose Tissue Browning/Brown Adipose Tissue Activation in High-fat Diet-induced Mice
Shuwen WANG ; Yaqi HU ; Rui WANG ; Yifan ZHANG ; Mengzhen XUE ; Yaqi WANG ; Fangqi XIA ; Leiqi ZHU ; Chengfu YUAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):71-78
ObjectiveTo investigate the effect and mechanism of total saponins from Panax japonicus (TSPJ) on white adipose tissue (WAT) browning/brown adipose tissue (BAT) activation in C57BL6/J male mice fed on a high-fat diet (HFD). MethodThirty-two C57BL6/J male mice (8-week-old) were randomly divided into a normal group, a model group, a low-dose TSPJ group, and a high-dose TSPJ group. The mice in the low-dose and high-dose TSPJ groups were given TSPJ for four months by gavage at 25, 75 mg·kg-1·d-1, respectively, and those in the other groups were given 0.5% sodium carboxymethyl cellulose (CMC-Na) accordingly. After four months of feeding, all mice were placed at 4 ℃ for acute cold exposure, and the core body temperature was monitored. Subsequently, all mice were sacrificed, and BAT and inguinal WAT (iWAT) were separated rapidly to detect the corresponding indexes. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in each group. The effect of TSPJ on the mRNA expression of uncoupling protein 1 (UCP1), fatty acid-binding protein 4 (FABP4), cytochrome C (CytC), PR domain-containing protein 16 (PRDM16), elongation of very long chain fatty acids protein 3 (ELOVL3), peroxisome proliferator-activated receptor γ (PPARγ), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in iWAT and BAT was detected by Real-time polymerase chain reaction (Real-time PCR). Western blot was also used to detect the protein expression of UCP1, PRDM16, PPARγ, and PGC-1α in BAT and iWAT of each group. The effect of TSPJ on UCP1 expression in BAT and iWAT was detected by immunohistochemistry. Result① Compared with the model group, TSPJ could decrease the body weight and proportions of iWAT and BAT in the HFD-induced mice (P<0.05, P<0.01). ② The body temperature of mice in the model group decreased compared with that in the normal group in the acute cold exposure tolerance test (P<0.05). The body temperature in the high-dose TSPJ group increased compared with that in the model group (P<0.01). ③ Compared with the normal group, the model group showed increased adipocyte diameter in iWAT and BAT and decreased number of adipocytes per unit area. Compared with the model group, the TSPJ groups showed significantly reduced cell diameter and increased number of cells per unit area, especially in the high-dose TSPJ group. ④ Compared with the normal group, the model group showed decreased mRNA expression of FABP4, UCP1, CytC, PRDM16, ELOVL3, PGC-1α, and PPARγ in adipose tissues of mice (P<0.05, P<0.01). Compared with the model group, after intervention with TSPJ, the mRNA expression was significantly up-regulated (P<0.05, P<0.01). ⑤ Compared with the normal group, the model group showed decreased protein expression of UCP1, PRDM16, PPARγ, and PGC-1α in adipose tissues of mice (P<0.05, P<0.01). Compared with the model group, after intervention with TSPJ, the protein expression increased significantly (P<0.05, P<0.01). ConclusionTSPJ could induce the browning of iWAT/BAT activation and enhance adaptive thermogenesis in obese mice induced by HFD. The underlying mechanism may be attributed to the activation of the PPARγ/PGC-1α signaling pathway.
7.Research Progress in Metal Element Probe Tagging Strategies
Yue-Li HU ; Cheng-Chao ZHANG ; Yan LI ; Yan-Xue WEI ; Rui LIU ; Yi LYU
Chinese Journal of Analytical Chemistry 2024;52(10):1457-1464
The metal element probe labeling strategy involves marking biomolecules with metal elements as signal-generating units and performing quantitative analysis of biomolecules through inductively coupled plasma mass spectrometry(ICP-MS).The combination of metal element labeling and ICP-MS technology offers significant advantages,including high sensitivity,high resolution,and low matrix effects,thereby expanding the approaches for quantitative analysis of biomolecules.This strategy has been widely applied in bioanalysis for broad purposes including disease diagnosis(or predication)and environmental regulation.Such an approach enables sensitive analysis and simultaneous detection of multiple components while overcoming interference from complex biological environments,presenting substantial application prospects.Over the past two decades,numerous research works have been reported in this area.Based on the abovementioned characteristics of the metal element labeling strategy,in this paper,the development of current labeling strategies based on metal element probe labeling were systematically reviewed,the advantages and disadvantages were discussed,the applications in high-sensitivity analysis and multiplex detection of biomolecules were reviewed,and an outlook on future development trends of this technology was provided.
8.Effect of CXCL7/CXCR2 axis on synaptic plasticity in obesity-related cognitive dysfunction
Jia HU ; Ao-Xue XU ; Rui HU ; Qi XUE ; Chun-Xia HUANG ; Ye ZHANG
Chinese Pharmacological Bulletin 2024;40(5):881-886
Aim To explore the effect of CXCL7/CX-CR2 axis on obesity-related cognitive dysfunction at both animal and cellular levels.Methods The novel object recognition test was performed to assess the cog-nition.After the preparation of the frozen sections,the activation of microglia and astrocytes in hippocampi and the level of PSD95 were determined by immunoflu-orescence staining.The content of CXCL7 in hipp-ocampi was determined by enzymelinked immunosor-bent assay.The dendritic spine density of hippocampal neurons was observed by Golgi staining.Furthermore,HT22 cells were treated with the recombinant mouse CXCL7 and/or si-RNA targeting CXCR2.After the treatment,the levels of CXCL7 and PSD95 were ob-served by immunocytochemistry staining.Results Compared with animals in the control group,there was significantly decreased discrimination index,increased activation of microglia and astrocytes,decreased con-tent of PSD95,decreased density of dendritic spine,and increased content of CXCL7 in hippocampi in the DIO group.Compared with animals in the DIO group,there were significantly increased discrimination index in the AWL group.In HT22 cells,the level of PSD95 significantly decreased in the Ctrl+CXCL7 group com-pared with the control group.This decrease was attenu-ated in the si-CXCR2+CXCL7 group compared with the Ctrl+CXCL7 group.Conclusion Chronic high-fat diet induces neuroinflammation and subsequently induces cognitive dysfunction,which may be related to the synaptic plasticity mediated by the CXCL7/CXCR2 axis.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Prognostic Significance of Progression of Disease within 24 Months in Mantle Cell Lymphoma
Rui-Xue MA ; Qian-Qian ZHANG ; Hui-Min CHEN ; Jin HU ; Feng-Yi LU ; Qian-Nan HAN ; Zhen-Yu LI ; Kai-Lin XU ; Wei CHEN
Journal of Experimental Hematology 2024;32(3):702-707
Objective:To investigate the effect of progression of disease within 24 months(POD24)on overall survival(OS)in patients with mantle cell lymphoma(MCL),and compare the clinical characteristics between POD24 and non-POD24 patients.Methods:A retrospective analysis was performed on 50 MCL patients with treatment indications and regular treatment who were admitted to the Affiliated Hospital of Xuzhou Medical University from January 2010 to August 2020.According to the occurrence of POD24,the patients were grouped for prognostic evaluation and clinical characteristics comparison.Results:Univariate Cox regression analysis showed that POD24,PLT,albumin,MIPI score,ECOG PS score,LDH were the factors influencing OS in newly diagnosed MCL patients(all P<0.05).The results of multivariate Cox regression analysis showed that POD24[HR=16.797(95%CI:3.671-76.861),P<0.001],albumin<40 g/L[HR=3.238(95%CI:1.095-9.572),P=0.034]and ECOG PS score≥2[HR=4.005(95%CI:1.033-15.521),P=0.045]were independent risk factors influencing OS in MCL patients.The incidence of PLT<100 × 109/L(33.3%vs 5.9%,P=0.033)and ECOG PS score≥2(45.5%vs 5.9%,P=0.040)were significantly higher in POD24 patients than those in non-POD24 patients.Conclusion:POD24 is an independent poor prognostic factor affecting the OS of MCL patients,and the patients with PLT<100 × 109/L and ECOG PS score ≥2 at diagnosis have a higher probability of POD24.


Result Analysis
Print
Save
E-mail