1.Characteristic volatile organic compounds in exhaled breath of coal workers' pneumoconiosis patients by thermal desorption gas chromatography-mass spectrometry
Yazhen HE ; Chunguang DING ; Junyun WANG ; Yuzhen FENG ; Fangda PENG ; Gaisheng LIU ; Fan YANG ; Chunmin ZHANG ; Rui GAO ; Qingyu MENG ; Zhijun WU ; Jingguang FAN
Journal of Environmental and Occupational Medicine 2025;42(5):571-577
Background Coal workers' pneumoconiosis is a serious occupational disease in China. Exhaled volatile organic compounds (VOCs) can serve as the "breath fingerprint" of internal pathological processes, which provides a theoretical basis for exhaled VOCs to be used as potential non-invasive biomarkers for early diagnosis of coal workers' pneumoconiosis. Objective To screen out the characteristic VOCs and important characteristic VOCs of exhaled air in patients with coal workers' pneumoconiosis, and to explore the potential of these VOCs as biomarkers for early non-invasive diagnosis of the disease. Methods In this study, 27 VOCs in the exhaled breath of 22 patients with stage I coal workers' pneumoconiosis, 77 workers exposed to dust, and 92 healthy controls were quantitatively detected by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Substances with P<0.05 in univariate analysis and variable importance projection (VIP) >1 in supervised orthogonal partial least squares discriminant analysis (OPLS-DA) model were selected as the characteristic VOCs for early diagnosis of coal workers' pneumoconiosis. Age was included in the LASSO regression model as a covariate to screen out important characteristic VOCs, and the diagnostic performance was evaluated by receiver operating characteristic (ROC) curve. Spearman correlation was further used to explore the correlation between important characteristic VOCs and clinical lung function indicators. Results Through univariate analysis and OPLS-DA modeling, 8 VOCs were selected, including 2-methylpentane, 3-methylpentane, n-hexane, methylcyclopentane, n-heptane, methylcyclohexane, 4-methyl-2-pentanone, and 2-hexanone, in exhaled breath of patients with coal workers' pneumoconiosis. The concentrations of 4 VOCs, including 3-methylpentane, n-hexane, 4-methyl-2-pentanone, and 2-hexanone, showed a decreasing trend with the increase of dust exposure years. By LASSO regression, the important characteristic VOCs of the coal workers' pneumoconiosis group and the dust exposure group were n-hexane, methylcyclohexane and 4-methyl-2-pentanone, and the important characteristic VOCs of the coal workers' pneumoconiosis group and the healthy group were 2-methyl-pentane and 4-methyl-2-pentanone. The ROC analysis showed that the area under the curve (AUC) of n-hexane, methylcyclohexane, and 4-methyl-2-pentanone were 0.969, 0.909, and 0.956, respectively, and the AUC of combined diagnosis was 0.988 and its Youden index was 0.961, suggesting that these results can serve as a valuable reference for further research on early diagnosis. The Correlation analysis found that there was a positive correlation between n-hexane and lung function indicators in the important characteristic VOCs, indicating that it could indirectly reflect the obstruction of lung function ventilation, further proving that important characteristic VOCs have the potential to monitor lung function decline. Conclusion Three important characteristic VOCs selected in this study have the potential to be used as non-invasive biomarkers for early diagnosis and disease monitoring of coal workers' pneumoconiosis, and are worthy of further study and verification.
2.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
3.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
4.Correlation of IGF2 levels with sperm quality, inflammation, and DNA damage in infertile patients.
Jing-Gen WU ; Cai-Ping ZHOU ; Wei-Wei GUI ; Zhong-Yan LIANG ; Feng-Bin ZHANG ; Ying-Ge FU ; Rui LI ; Fang WU ; Xi-Hua LIN
Asian Journal of Andrology 2025;27(2):204-210
Insulin-like growth factor 2 (IGF2) is a critical endocrine mediator implicated in male reproductive physiology. To investigate the correlation between IGF2 protein levels and various aspects of male infertility, specifically focusing on sperm quality, inflammation, and DNA damage, a cohort of 320 male participants was recruited from the Women's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between 1 st January 2024 and 1 st March 2024. The relationship between IGF2 protein concentrations and sperm parameters was assessed, and Spearman correlation and linear regression analysis were employed to evaluate the independent associations between IGF2 protein levels and risk factors for infertility. Enzyme-linked immunosorbent assay (ELISA) was used to measure IGF2 protein levels in seminal plasma, alongside markers of inflammation (tumor necrosis factor-alpha [TNF-α] and interleukin-1β [IL-1β]). The relationship between seminal plasma IGF2 protein levels and DNA damage marker phosphorylated histone H2AX (γ-H2AX) was also explored. Our findings reveal that IGF2 protein expression decreased notably in patients with asthenospermia and teratospermia. Correlation analysis revealed nuanced associations between IGF2 protein levels and specific sperm parameters, and low IGF2 protein concentrations correlated with increased inflammation and DNA damage in sperm. The observed correlations between IGF2 protein levels and specific sperm parameters, along with its connection to inflammation and DNA damage, underscore the importance of IGF2 in the broader context of male reproductive health. These findings lay the groundwork for future research and potential therapeutic interventions targeting IGF2-related pathways to enhance male fertility.
Humans
;
Male
;
Insulin-Like Growth Factor II/metabolism*
;
Infertility, Male/genetics*
;
DNA Damage
;
Adult
;
Inflammation/metabolism*
;
Spermatozoa/metabolism*
;
Semen Analysis
;
Semen/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Histones/metabolism*
;
Interleukin-1beta/metabolism*
5.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
6.Role of Gold Nanorods Functionalized by Nucleic Acid Nanostructures Carrying Doxorubicin in Synergistic Anti-Cancer Therapy.
Hao WU ; Huang Shui MA ; Xing Han WU ; Qiang SUN ; Lin FENG ; Rui Fang JIANG ; Yan Hong LI ; Quan SHI
Biomedical and Environmental Sciences 2025;38(4):403-415
OBJECTIVE:
Cancer remains a significant global health challenge, necessitating the development of effective treatment approaches. Developing synergistic therapy can provide a highly promising strategy for anti-cancer treatment through combining the benefits of various mechanisms.
METHODS:
In this study, we developed a synergistic strategy for chemo-photothermal therapy by constructing nanocomposites using gold nanorods (GNRs) and tetrahedral framework nucleic acids (tFNA) loaded with the anti-tumor drug doxorubicin (DOX).
RESULTS:
Our in vitro studies have systematically clarified the anti-cancer behaviors of tFNA-DOX@GNR nanocomposites, characterized by their enhanced cellular uptake and proficient lysosomal escape capabilities. It was found that the key role of tFNA-DOX@GNR nanocomposites in tumor ablation is primarily due to their capacity to induce cytotoxicity in tumor cells via a photothermal effect, which generates instantaneous high temperatures. This mechanism introduces various responses in tumor cells, facilitated by the thermal effect and the integrated chemotherapeutic action of DOX. These reactions include the induction of endoplasmic reticulum stress, characterized by elevated reactive oxygen species levels, the promotion of apoptotic cell death, and the suppression of tumor cell proliferation.
CONCLUSION
This work exhibits the potential of synergistic therapy utilizing nanocomposites for cancer treatment and offers a promising avenue for future therapeutic strategies.
Doxorubicin/chemistry*
;
Gold/chemistry*
;
Nanotubes/chemistry*
;
Humans
;
Nanocomposites/chemistry*
;
Cell Line, Tumor
;
Nucleic Acids/chemistry*
;
Antibiotics, Antineoplastic/pharmacology*
;
Antineoplastic Agents/administration & dosage*
7.Research Progress on Obesity-Associated Kidney Diseases.
Rui-Feng YANG ; Wen WU ; Peng ZHANG
Acta Academiae Medicinae Sinicae 2025;47(1):77-85
The pathogenesis of obesity-associated kidney disease (OAKD) involves many aspects,including the overactivation of the renin-angiotensin-aldosterone system,insulin resistance,chronic inflammation,disorder of lipid metabolism and imbalance of gut microecology.Treatment strategies for OAKD focus on lifestyle adjustments,pharmacotherapy,bariatric surgery,and fecal microbiota transplantation.A deeper understanding of the hazards of OAKD and its pathogenesis will contribute to the development of personalized and precise strategies for prevention,diagnosis and treatment of OAKD in the future.
Humans
;
Obesity/complications*
;
Kidney Diseases/therapy*
;
Renin-Angiotensin System
;
Insulin Resistance
8.Baihe Wuyaotang Ameliorates NAFLD by Enhancing mTOR-mediated Liver Autophagy
Rui WANG ; Tiantian BAN ; Lihui XUE ; Xinyi FENG ; Jiyuan GUO ; Jiaqi LI ; Shenghe JIANG ; Xiaolei HAN ; Baofeng HU ; Wenli ZHANG ; Naijun WU ; Shuang LI ; Yajuan QI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):66-77
ObjectiveTo investigate the therapeutic effect of Baihe Wuyaotang (BWT) on non-alcoholic fatty liver disease (NAFLD) and elucidate its underlying mechanism. MethodC57BL/6J mice were randomly assigned to six groups: normal control, model, positive drug (pioglitazone hydrochloride 1.95×10-3 g·kg-1), and low-, medium-, and high-dose BWT (1.3,2.5 and 5.1 g·kg-1). Following a 12-week high-fat diet (HFD) inducement, the mice underwent six weeks of therapeutic intervention with twice-daily drug administration. Body weight was monitored weekly throughout the treatment period. At the fifth week, glucose tolerance (GTT) and insulin tolerance (ITT) tests were conducted. Subsequently, the mice were euthanized for the collection of liver tissue and serum, and the subcutaneous adipose tissue (iWAT) and epididymal adipose tissue (eWAT) were weighed. Serum levels of total triglycerides (TG) and liver function indicators,such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), were determined. Histological examinations, including oil red O staining, hematoxylin-eosin (HE) staining, Masson staining, and transmission electron microscopy, were performed to evaluate hepatic lipid deposition, pathological morphology, and ultrastructural changes, respectively. Meanwhile, Western blot and real-time quantitative polymerase chain reaction (Real-time PCR) were employed to analyze alterations, at both gene and protein levels, the insulin signaling pathway molecules, including insulin receptor substrate 1/2/protein kinase B/forkhead box gene O1 (IRS1/2/Akt/FoxO1), glycogen synthesis enzymes phosphoenolpyruvate carboxy kinase (Pepck) and glucose-6-phosphatase (G6Pase), lipid metabolism-related genes stearoyl-coA desaturase-1 (SCD-1) and carnitine palmitoyltransferase-1 (CPT-1), fibrosis-associated molecules α-smooth muscle actin (α-SMA), type Ⅰ collagen (CollagenⅠ), and the fibrosis canonical signaling pathway transforming growth factor-β1/drosophila mothers against decapentaplegic protein2/3(TGF-β1/p-Smad/Smad2/3), inflammatory factors such as interleukin(IL)-6, IL-8, IL-11, and IL-1β, autophagy markers LC3B Ⅱ/Ⅰ and p62/SQSTM1, and the expression of mammalian target of rapamycin (mTOR). ResultCompared with the model group, BWT reduced the body weight and liver weight of NAFLD mice(P<0.05, P<0.01), inhibited liver lipid accumulation, and reduced the weight of white fat: it reduced the weight of eWAT and iWAT(P<0.05, P<0.01) as well as the serum TG content(P<0.05, P<0.01). BWT improved the liver function as reflected by the reduced ALT and AST content(P<0.05, P<0.01). It improved liver insulin resistance by upregulating IRS2, p-Akt/Akt, p-FoxO1/FoxO1 expressions(P<0.05). Besides, it improved glucose and lipid metabolism disorders: it reduced fasting blood glucose and postprandial blood glucose(P<0.05, P<0.01), improved GTT and ITT(P<0.05, P<0.01), reduced the expression of Pepck, G6Pase, and SCD-1(P<0.01), and increased the expression of CPT-1(P<0.01). The expressions of α-SMA, Collagen1, and TGF-β1 proteins were down-regulated(P<0.05, P<0.01), while the expression of p-Smad/Smad2/3 was downregulated(P<0.05), suggesting BWT reduced liver fibrosis. BWT inhibited inflammation-related factors as it reduced the gene expression of IL-6, IL-8, IL-11 and IL-1β(P<0.01) and it enhanced autophagy by upregulating LC3B Ⅱ/Ⅰ expression(P<0.05)while downregulating the expression of p62/SQSTM1 and mTOR(P<0.05). ConclusionBWT ameliorates NAFLD by multifaceted improvements, including improving IR and glucose and lipid metabolism, anti-inflammation, anti-fibrosis, and enhancing autophagy. In particular, BWT may enhance liver autophagy by inhibiting the mTOR-mediated signaling pathway.
9.Epidemiology and associated factors of Helicobacter pylori infection in Tibetan families on the Western Sichuan Plateau
Dingjian WU ; Rui WANG ; Hengqi LIU ; Feng XIAN ; Xianjin BI ; Mengru WEI ; Yonghong XIE ; Chunhui LAN
Chinese Journal of Infectious Diseases 2024;42(1):35-40
Objective:To investigate the Helicobacter pylori ( H. pylori) infection of Tibetan families and individuals in the Western Sichuan Plateau region and explore the related factors which affected H. pylori infection. Methods:This was a single-center cross-sectional study. Questionnaires were collected from 50 Tibetan families including 155 individuals in Western Sichuan Plateau region during March to May 2023. The 13C-urea breath test was performed to confirm the current infection status of participants. Binary logistic regression were used to analyze the related factors associated with H. pylori infection. Results:Among the 50 Tibetan households, the individual-based H. pylori infection rate was 47.10%(73/155), with two out of nine children and 48.63%(71/146) adults infected. The age group of 18 to 40 years had the highest infection rate (55.00%, 11/20). The prevalence of infection based on family was 80.00%(40/50), of which 16.00%(8/50) had all family members infected. Of the 59 couples surveyed, 23.73%(14/59) were both infected, and 45.76%(27/59) had one person infected. Of the six families which had children and adolescents, two households had their children infected. Logistic regression analysis showed that size of the family was a factor related to H. pylori infection (odds ratio=3.038, 95% confidence interval 1.043 to 10.491, P=0.042). Conclusions:The family-based H. pylori infection rate is relatively high in Tibetan residents in the Western Sichuan Plateau, and larger family size is related with higher risk of H. pylori infection within the family.
10.Antipyretic Activity of Sulfhydryl Active Fractions Extracted From Bubali Cornu
Siying HUANG ; Qiyuan FENG ; Wanglin BAO ; Xiaozheng HUANG ; Wenxing WU ; Ming ZHAO ; Jinao DUAN ; Rui LIU
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(3):268-277
OBJECTIVE To extract the-SH active fractions(SHF)from Bubali Cornu(water buffalo horn)and evaluate its an-tipyretic activity.METHODS SHF was extracted from Bubali Cornu by SDS-DTT,and the content of native thiols(-SH)was deter-mined by Ellman reagent method.SHF was identified based on nano LC-MS/MS technology.Evaluation of antipyretic activity of SHF was based on LPS-induced fever rat model.The levels of PGE2,IL-1β,and TNF-α in plasma as well as the levels of cAMP,PGE2,and TNF-α in the hypothalamus were measured by ELISA kits.An untargeted metabolomics approach was used to further investigate the intervention of SHF on plasma metabolites in febrile rats.RESULTS SDS-DTT could effectively extract SHF from Bubali Cornu,in which the main components were type Ⅰ,type Ⅱ keratins and keratin-associated proteins,which were rich in Cys,and the ratio of-SH to protein in SHF was increased about 20 times more than that of traditional decoction.SHF could significantly decrease(P<0.01)the body temperature which lasted for 4.5 hours.SHF could also significantly decrease the levels of PGE2,IL-1β,TNF-α and cAMP in plasma and hypothalamic.A total of 137 potentially differential metabolites were identified from plasma samples of the control and model groups,of which 31 metabolites could be dialed back after SHF administration,including lysophosphatidic acid,phosphatidyli-nositol,phosphatidic acid,triglycerides,phosphatidylcholine and so on,which were mainly involved in the glycerophospholipid meta-bolic pathway.CONCLUSION SHF has precise antipyretic effect,and the dosage of 1/10 of the aqueous extract can show its com-parable antipyretic effect,which provides the direction and basis for the basic research on the antipyretic efficacy of Bubali Cornu.

Result Analysis
Print
Save
E-mail