1.Analysis of Quality Changes of Small Packaged Alismatis Rhizoma Decoction Pieces Under Different Packaging and Storage Conditions
Gaoting YANG ; Rui XIAN ; Zimin WANG ; Zongyi ZHAO ; Zhiqiong LAN ; Xiaoli PAN ; Min LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):179-188
ObjectiveTo screen suitable packaging and storage conditions for small packaged Alismatis Rhizoma decoction pieces, laying the foundation for developing standardized storage, maintenance techniques and determining shelf life. MethodsUsing the accelerated stability test method, the small packaged decoction pieces of Alismatis Rhizoma were placed in polyethylene plastic bags, aluminum foil polyethylene composite bags, and cowhide coated paper bags under temperature of (40±2) ℃ and relative humidity of (75±5)% conditions, the quality testing was conducted at the end of the 0th, 1st, 2nd, 3rd, and 6th month, respectively. Using long-term stability test method, an orthogonal experiment was designed to investigate storage conditions, packaging materials, and packaging methods. At the end of the 0th, 1st, 3rd, 6th, 9th, 12th, 18th, and 24th month, the quality of small packaged Alismatis Rhizoma decoction pieces was tested under different packaging and storage conditions(including 2 packaging methods:vacuum packaging and sealed packaging, 3 storage conditions:room temperature, cool, and modified atmosphere, 3 packaging materials:cowhide coated paper bag, aluminum foil polyethylene composite bag, and polyethylene plastic bag). Then, the G1-entropy weight method combined with orthogonal experiment was used to analyze the quality changes of the decoction pieces under different packaging and storage conditions to identify optimal packaging and storage conditions. The quality testing indicators for Alismatis Rhizoma decoction pieces were expanded beyond those specified in the 2020 edition of the Pharmacopoeia of the People's Republic of China. In addition to the existing indicators(characteristics, moisture content, extractives, and the total content of 23-acetyl alisol B and 23-acetyl alisol C), new indicators including color value, water activity, total triterpenoid content, and alisol B content have been added. ResultsThe accelerated stability test results indicated that the quality of small packaged Alismatis Rhizoma decoction pieces was more stable when packaged in aluminum foil-polyethylene composite materials compared to cowhide-coated paper bags and polyethylene plastic bags. Analysis of the long-term stability test results using the G1-entropy weight method combined with orthogonal experiment revealed that storage conditions had the greatest impact on both raw and salt-processed products, followed by packaging materials, while the packaging method had the least influence. For both types of small packaged Alismatis Rhizoma decoction pieces, modified atmosphere storage demonstrated superior efficacy compared to cool storage or room temperature storage. Storage in aluminum foil-polyethylene composite bags was superior to polyethylene plastic bags or cowhide-coated paper bags. However, the stability of sealed raw products was better than vacuum-packed ones, whereas vacuum-packed salt-processed products exhibited greater stability than their sealed counterparts. ConclusionBased on the results of the quality changes of small packaged Alismatis Rhizoma decoction pieces under different storage conditions, it is recommended that the suitable storage packaging conditions for small packaged raw products are sealed packaging with aluminum foil polyethylene composite bags and controlled atmosphere storage, and the suitable storage and packaging conditions for small packaged salt-processed products are vacuum packaging with aluminum foil polyethylene composite bags and controlled atmosphere storage.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
4.Effect of Folic Acid-modified Crebanine Polyethylene Glycol-polylactic Acid Hydroxyacetic Acid Copolymer Nanoparticles Combined with Ultrasonic Irradiation on Subcutaneous Tumor Growth of Liver Cancer in Mice
Rui PAN ; Junze TANG ; Hailiang ZHANG ; Kun YU ; Xiaoyu ZHAO ; Xin CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):217-225
ObjectiveTo investigate the effect of folic acid-modified crebanine polyethylene glycol-polylactic acid hydroxyacetic acid copolymer(PEG-PLGA) nanoparticles(FA-Cre@PEG-PLGA NPs, hereinafter referred to as NPs) combined with ultrasonic irradiation on subcutaneous tumor of liver cancer in Kunming(KM) mice. MethodsEighty-four healthy male KM mice were utilized to establish a subcutaneous tumor model of mouse hepatocellular carcinoma with H22 cells, then mice were randomly divided into model group, placebo group, hydroxycamptothecin group(8 mg∙kg-1), low, medium and high dose crebanine raw material groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose crebanine groups, respectively), low, medium and high dose NPs groups(2, 2.5, 3 mg∙kg-1), and low, medium and high dose NPs combined with ultrasonic irradiation groups(2, 2.5, 3 mg∙kg-1, hereinafter referred to as the low, medium and high dose combination groups, respectively). The corresponding doses of drugs were administered via tail vein injection, the model group received no treatment, while the placebo group was injected with an equivalent amount of normal saline. Dosing was conducted for a total of 10 times on alternate days. The body mass of the mice was monitored, and parameters such as body mass change rate, thymus index, spleen index, tumor volume, tumor weight, relative tumor growth rate(T/C), and tumor inhibition rate(TGI) were calculated. Pathological changes in liver and kidney tissues as well as the tumor were observed by hematoxylin-eosin(HE) staining. Additionally, the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), blood urea nitrogen(BUN) and creatinine(CREA) in serum of mice were detected by biochemical method. Furthermore, the effect of ultrasound on the distribution of NPs in subcutaneous tumors of mouse hepatocellular carcinoma was observed by in vivo imaging technique. ResultsAmong different treatment methods, the combination of NPs and ultrasound irradiation had the best therapeutic effect. Compared with the model group, the body mass growth rates of mice in the medium and high combination groups decreased, while the thymus index and spleen index increased, but there was no statistically significant difference in serum AST, ALT, BUN and CREA levels, indicating that NPs combined with ultrasound irradiation had little effect on the normal physiological state of the body, oth groups had TGI>40% and T/C<60%, indicating a clear anti-tumor effect. Pathological analysis showed that compared with the NPs groups, the combination groups exhibited varying degrees of necrosis in tumor cells, accompanied by less damage to the liver and kidneys. In vivo imaging of small animals showed that compared with the high dose NPs group, the high dose combination group had stronger tumor targeting ability(P<0.01). ConclusionNPs combined with ultrasonic irradiation can not only effectively targeted the drug to the tumor site, inhibit the subcutaneous tumor growth of mouse liver cancer, but also decrease damage to liver and kidney tissues.
5.Exercise intervention and the role of pyroptosis in osteoarthritis
Qiuyue WANG ; Pan JIN ; Rui PU
Chinese Journal of Tissue Engineering Research 2025;29(8):1667-1675
BACKGROUND:Pyroptosis participate in the degradation of the extracellular matrix of chondrocytes,synovial inflammation and pain,and plays an important role in the prevention and treatment of osteoarthritis.In addition,exercise can inhibit the occurrence of pyroptosis to regulate the progression of osteoarthritis,which has become a research hot spot in the prevention and treatment of osteoarthritis. OBJECTIVE:To summarize the regulatory role of pyroptosis in osteoarthritis and the mechanism of exercise-mediated pyroptosis in osteoarthritis. METHODS:PubMed and CNKI databases were searched during 1992 to 2024 with the keywords"pyroptosis,osteoarthritis,chondrocyte pyroptosis,synovial cell pyroptosis,exercise"in English and Chinese,respectively.Finally,71 relevant articles were selected according to the inclusion and exclusion criteria. RESULTS AND CONCLUSION:(1)Osteoarthritis is a chronic degenerative joint disease characterized by the breakdown of cartilage extracellular matrix,synovial inflammation,and subchondral bone remodeling.This condition often leads to organic lesions,bone pain,and functional impairment.(2)Pyroptosis,a distinct programmed cell death mechanism,involves cell lysis and the release of inflammatory cytokines,triggering a robust inflammatory response,and is closely related to the development of osteoarthritis.Pyroptosis can result in the release of numerous inflammatory factors,thereby activate the nuclear factor kappa-B transcription and increase pyroptosis protein production,and in turn exacerbate the occurrence and development of osteoarthritis.Therefore,pyroptosis can be a new direction for the prevention and treatment of osteoarthritis.(3)Exercise has been shown to down-regulate the pyroptosis protein signaling pathway and inhibit the expression of related inflammatory factors,thereby playing a pivotal role in osteoarthritis prevention and treatment.Aerobic and anaerobic exercises can delay the pathological process of osteoarthritis by inhibiting the occurrence of pyroptosis.Moderate-intensity aerobic exercise is most effective in improving osteoarthritis by inhibiting pyroptosis signaling pathways,while anaerobic exercise can have beneficial effects on osteoarthritis by improving muscle mass.
6.Research Progress of Stem Cells Transplantation in Treatment of Cognitive Impairment After Stroke
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):41-49
Stroke is a common acute cerebrovascular disease. Post-stroke cognitive impairment (PSCI) is one of the most common complications of stroke, which seriously affects the quality of life and physical health of patients. As a cutting-edge medical therapy, stem cells transplantation has great potential in the treatment of PSCI by reducing inflammation, promoting axon regeneration and immune regulation, and has become the focus of current research. However, the relationship between stem cells transplantation and PSCI has not been systematically summarized. Therefore, this paper will briefly summarize the biological functions of different types of stem cells, systematically comb out and summarize the mechanisms of stem cells transplantation in PSCI regulation and its applications in PSCI treatment, providing a deeper understanding and strategy for clinical PSCI management.
7.Targeting effect and anti-tumor mechanism of folic acid-modified crebanine nanoparticles combined with ultra-sound irradiation on M109 cells in vitro and in vivo
Hailiang ZHANG ; Xiaoyu ZHAO ; Jiahua MEI ; Rui PAN ; Junze TANG ; Kun YU ; Rui XUE ; Xiaofei LI ; Xin CHENG
China Pharmacy 2025;36(14):1730-1736
OBJECTIVE To investigate the targeting effect of folic acid-modified crebanine nanoparticles (FA-Cre@PEG- PLGA NPs, hereinafter referred to as “NPs”) combined with ultrasound irradiation on M109 cells in vitro and in vivo after administration, and explore the anti-tumor mechanism. METHODS CCK-8 assay was used to detect the inhibitory effect of NPs combined with ultrasound irradiation on the proliferation of M109 cells, and the best ultrasound time was selected. Using human lung cancer A549 cells as a control, the targeting of NPs combined with ultrasound irradiation to M109 cells was evaluated by free folic acid blocking assay and cell uptake assay. The effects of NPs combined with ultrasound irradiation on the migration, invasion, apoptosis, cell cycle and reactive oxygen species (ROS) levels of M109 cells were detected by cell scratch test, Transwell chamber test and flow cytometry at 1 h after 958401536@qq.com administration; the changes of mitochondrial membrane potential (MMP) were observed by fluorescence inverted microscope. A mouse subcutaneous tumor model of M109 cells was constructed, and the in vivo tumor targeting of NPs combined with ultrasound irradiation was investigated by small animal in vivo imaging technology. RESULTS NPs combined with ultrasound irradiation could significantly inhibit the proliferation of M109 cells, and the optimal ultrasound time was 1 h after administration. The free folic acid could antagonize the inhibitory effect of NPs on the proliferation of M109 cells, and combined with ultrasound irradiation could partially reverse this antagonism. Compared with A549 cells, the uptake rate of NPs in M109 cells was significantly higher (P<0.01), and ultrasound irradiation could promote cellular uptake. NPs combined with ultrasound irradiation could inhibit the migration and invasion of M109 cells and block the cell cycle in the G0/G1 and G2/M phases. Compared with control group, the apoptosis rate of M109 cells and ROS level were increased significantly (P<0.01), while the MMP decreased significantly (P<0.01) in the different concentration (100, 200, 300 μg/mL) groups of M109 cells. Compared with the mice in non-ultrasound group, the fluorescence intensity and tumor-targeting index of the tumor site in the 0 h ultrasound group were significantly enhanced (P<0.05 or P<0.01). CONCLUSIONS NPs combined with ultrasound irradiation have a strong targeting effect on M109 cells in vitro and in vivo, the anti-tumor mechanism includes inhibiting cell migration and invasion, blocking cell cycle, and inducing apoptosis.
8.Association between unhealthy lifestyle and risk of heart disease and diabetes in the elderly in Xi'an
Ning CUI ; Jun LIU ; Rui WANG ; Nini MA ; Man ZHANG ; Aiping SUN ; Xiaomin RAN ; Aiqing PAN
Journal of Public Health and Preventive Medicine 2025;36(5):163-167
Objective To investigate the association between lifestyle and risk of heart disease and diabetes in the elderly population in Xi'an City. Methods From January 2021 to January 2024, a staged cluster sampling method was used to investigate the lifestyle and the occurrence of heart disease and diabetes in elderly population aged 60 years and above in the communities of Xi'an. Multivariate logistic regression was used to analyze the relationship between lifestyle and the risk of heart disease and diabetes. Results A total of 413 elderly people were investigated, of which 31.96% had heart disease, 27.12% had diabetes, and 10.90% had diabetes with heart disease. Multivariate logistic regression analysis revealed that age, BMI, family history, sweet food preference, smoking, and sitting and lying for a long time were risk factors for diabetes in the elderly population (P<0.05). Age, BMI, family history, history of diabetes, preference for salted products, smoking, drinking, and sitting and lying for a long time were risk factors for heart disease in the elderly population (P<0.05). Conclusion The incidence rates of heart disease and diabetes are high in the elderly population in Xi'an City. The risk of diabetes is related to unhealthy lifestyles such as sweet food preference, smoking, and sitting and lying for a long time, while heart disease is related to unhealthy lifestyles such as preference for salted products, smoking, drinking, and sitting and lying for a long time.
9.Hearing loss prevalence and burden of disease in China: Findings from provincial-level analysis.
Yu WANG ; Yang XIE ; Minghao WANG ; Mengdan ZHAO ; Rui GONG ; Ying XIN ; Jia KE ; Ke ZHANG ; Shaoxing ZHANG ; Chen DU ; Qingchuan DUAN ; Fang WANG ; Tao PAN ; Furong MA ; Xiangyang HU
Chinese Medical Journal 2025;138(1):41-48
BACKGROUND:
Without timely and effective rehabilitation, hearing loss may profoundly affect human life quality. China has a large population of hearing-impaired individuals, which imposes a heavy health burden on society. Moreover, this population is projected to increase rapidly owing to China's aging society.
METHODS:
We used data from a population-representative epidemiological investigation of hearing loss and ear diseases in four Chinese provinces. We estimated the national prevalence using multiple linear regression of the age-group proportions and prevalence in 31 provinces with clustering analysis. We used years lived with disability (YLDs) to analyze the disease burden and forecasted the prevalence of hearing loss by 2060 in China.
RESULTS:
An estimated 115 million people had moderate-to-complete hearing loss in 2015 across the 31 provinces of China (8.4% of 1.37 billion people). Of these, 85.7% were older than age 50 years (99 million people) and 2.4% were younger than 20 years old (2.8 million people). Of all YLDs attributable to hearing loss, 68.9% were attributable to moderate-to-complete cases. By 2060, a projected 242 million people in China will have moderate-to-complete hearing loss, a 110.0% increase from 2015.
CONCLUSIONS
The hearing loss prevalence in China is high. Population aging and socioeconomic factors substantially affect the prevalence and severity of hearing loss and the disease burden. The prevalence and severity of hearing loss are unevenly distributed across different provinces. Future public health policies should take these trends and regional variations into account.
Humans
;
China/epidemiology*
;
Hearing Loss/epidemiology*
;
Prevalence
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Aged, 80 and over
;
Cost of Illness
10.Research progress on the regulation of ferroptosis by non-coding RNAs in esophageal squamous cell cancer.
Jia-Min WANG ; Pan LIU ; Rui ZHU ; Dan SU
Acta Physiologica Sinica 2025;77(3):563-572
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive tract that poses a significant threat to human health, with an incidence rate that continues to rise globally. Increasing research highlights the crucial role of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating ferroptosis and contributing to the malignant progression of ESCC. These ncRNAs influence the proliferation, apoptosis, and invasion capabilities of ESCC cells by modulating iron metabolism and redox balance. miRNAs can regulate cellular iron accumulation and oxidative stress by targeting ferroptosis-related genes; lncRNAs may indirectly affect iron metabolic pathways by competitively binding to miRNAs; circRNAs, through a sponge effect, may regulate the activity of miRNAs. This review systematically summarizes the mechanisms of ncRNAs-mediated regulation of ferroptosis in ESCC, focusing on molecular mechanisms, regulatory networks, and their specific roles in the ferroptosis process. Additionally, the potential of ncRNAs in ESCC diagnosis, prognosis assessment, and therapeutic intervention is discussed, aiming to provide new insights and targets for ferroptosis-based tumor therapy.
Ferroptosis/genetics*
;
Humans
;
Esophageal Neoplasms/physiopathology*
;
Esophageal Squamous Cell Carcinoma
;
MicroRNAs/physiology*
;
RNA, Long Noncoding/physiology*
;
RNA, Circular
;
RNA, Untranslated/physiology*


Result Analysis
Print
Save
E-mail