1.Current research status and application prospects of mesenchymal stem cell-derived exosomes in islet transplantation
Rui LI ; Dianxiang WANG ; Zhaowei LIANG ; Bing HAN ; Hao LIAN
Organ Transplantation 2025;16(1):163-168
Type 1 diabetes mellitus is a chronic autoimmune disease caused by the destruction of pancreatic islet β cells. Pancreatic islet transplantation provides a treatment method for patients with type 1 diabetes mellitus to restore endogenous insulin secretion. However, some problems limit the widespread application of islet transplantation, such as the shortage of donors and post-transplantation rejection damage. Mesenchymal stem cell-derived exosome (MSC-Exo) has become a potential tool for islet transplantation therapy due to their immunomodulatory and tissue repair capabilities. MSC-Exo shows great promise for application, because of low immunogenicity, easily being stored and transported, and the potential as drug delivery vehicles. However, challenges such as preparation, purification, standardization and safety verification need to be overcome before converting MSC-Exo into clinical practice. Therefore, this article reviews the application and potential advantages of MSC-Exo in islet transplantation, aiming to providing more effective and safer treatment options for patients with type 1 diabetes mellitus.
2.The Role and Mechanism of Aerobic Exercise in Enhancing Insulin Sensitivity by Reducing Circulating Glutamate
Xiao-Rui XING ; Qin SUN ; Huan-Yu WANG ; Ruo-Bing FAN ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1373-1385
ObjectiveTo explore the role and potential mechanism of circulating glutamate in enhancing insulin sensitivity by aerobic exercise. This research may provide a novel strategy for preventing metabolic diseases through precise exercise interventions. MethodsTo investigate the effects of elevated circulating glutamate on insulin sensitivity and its potential mechanisms, 18 male C57BL/6 mice aged 6 to 8 weeks were randomly divided into 3 groups: a control group (C), a group receiving 500 mg/kg glutamate supplementation (M), and a group receiving 1 000 mg/kg glutamate supplementation (H). The intervention lasted for 12 weeks, with treatments administered 6 d per week. Following the intervention, an insulin tolerance test (ITT) and a glucose tolerance test (GTT) were conducted. Circulating glutamate levels were measured using a commercial kit, and the activity of the skeletal muscle InsR/IRS1/PI3K/AKT signaling pathway was analyzed via Western blot. To further investigate the role of circulating glutamate in enhancing insulin sensitivity through aerobic exercise, 30 male C57BL/6 mice were randomly assigned to 3 groups: a control group (CS), an exercise intervention group (ES), and an exercise combined with glutamate supplementation group (EG). The ES group underwent treadmill-based aerobic exercise, while the EG group received glutamate supplementation at a dosage of 1 000 mg/kg in addition to aerobic exercise. The intervention lasted for 10 weeks, with sessions occurring 6 d per week, and the same procedures were followed afterward. To further elucidate the mechanism by which glutamate modulates the InsR/IRS1/PI3K/AKT signaling pathway, C2C12 myotubes were initially subjected to graded glutamate treatment (0, 0.5, 1, 3, 5, 10 mmol/L) to determine the optimal concentration for cellular intervention. Subsequently, the cells were divided into 3 groups: a control group (C), a glutamate intervention group (G), and a glutamate combined with MK801 (an NMDA receptor antagonist) intervention group (GK). The G group was treated with 5 mmol/L glutamate, while the GK group received 50 μmol/L MK801 in addition to 5 mmol/L glutamate. After 24 h of intervention, the activity of the InsR/IRS1/PI3K/AKT signaling pathway was analyzed using Western blot. ResultsCompared to the mice in group C, the circulating glutamate levels, the area under curve (AUC) of ITT, and the AUC of GTT in the mice of group H were significantly increased. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle were significantly downregulated. Compared to the mice in group CS, the circulating glutamate levels, the AUC of ITT, and the AUC of GTT in the mice of group ES were significantly reduced. Additionally, the expression levels of p-InsRβ, IRS1, p-AKT, and p-mTOR proteins in skeletal muscle of group ES mice were significantly upregulated. There were no significant changes observed in the mice of group EG. Compared to the cells in group 0 mmol/L, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in cells of group 5 mmol/L were significantly downregulated. Compared to the cells in group C, the expression levels of p-InsRβ, p-IRS1, p-PI3K, and p-AKT proteins in the cells of group G were significantly downregulated. No significant changes were observed in the cells of group GK. ConclusionLong-term aerobic exercise can improve insulin sensitivity by lowering circulating levels of glutamate. This effect may be associated with the upregulation of the InsR/IRS1/AKT signaling pathway activity in skeletal muscle. Furthermore, glutamate can weaken the activity of the InsR/IRS1/PI3K/AKT signaling pathway in skeletal muscle, potentially by binding to NMDAR expressed in skeletal muscle.
3.Construction and application of the "Huaxi Hongyi" large medical model
Rui SHI ; Bing ZHENG ; Xun YAO ; Hao YANG ; Xuchen YANG ; Siyuan ZHANG ; Zhenwu WANG ; Dongfeng LIU ; Jing DONG ; Jiaxi XIE ; Hu MA ; Zhiyang HE ; Cheng JIANG ; Feng QIAO ; Fengming LUO ; Jin HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):587-593
Objective To construct large medical model named by "Huaxi HongYi"and explore its application effectiveness in assisting medical record generation. Methods By the way of a full-chain medical large model construction paradigm of "data annotation - model training - scenario incubation", through strategies such as multimodal data fusion, domain adaptation training, and localization of hardware adaptation, "Huaxi HongYi" with 72 billion parameters was constructed. Combined with technologies such as speech recognition, knowledge graphs, and reinforcement learning, an application system for assisting in the generation of medical records was developed. Results Taking the assisted generation of discharge records as an example, in the pilot department, after using the application system, the average completion times of writing a medical records shortened (21 min vs. 5 min) with efficiency increased by 3.2 time, the accuracy rate of the model output reached 92.4%. Conclusion It is feasible for medical institutions to build independently controllable medical large models and incubate various applications based on these models, providing a reference pathway for artificial intelligence development in similar institutions.
4.Space magnetic environment and circadian rhythm.
Bing-Xin GAO ; Cao WANG ; Rui-Xian JIANG ; Wei-Ming TIAN
Acta Physiologica Sinica 2025;77(4):721-730
In recent years, China's manned space program has advanced rapidly, with deep space exploration missions such as manned lunar landing steadily progressing, leading to a significant extension of astronauts' duration in outer space. In this context, the impact of the space magnetic field environment on astronaut health has become increasingly conspicuous. Characterized by its complexity, the spatial magnetic field indirectly regulates the circadian rhythm system by interfering with mitochondrial functions, such as electron transport chain activity, ATP synthesis efficiency, and reactive oxygen species (ROS) balance. This disruption can lead to circadian misalignment, sleep disorders, metabolic dysregulation, and other issues, severely compromising astronauts' physical and mental well-being, as well as mission performance. Currently, researchers have carried out extensive investigations into the influence of the space magnetic environment on circadian rhythms. Nevertheless, due to disparities in magnetic field parameters, exposure durations, and the model organisms employed in experiments, the results have been inconsistent. This review systematically elaborates on ground-based simulation technologies for spatial magnetic field environments and their applications, summarizes the effects of magnetic fields with varying intensities and types on core circadian rhythm biomarkers in model organisms and humans, and explores the underlying molecular and physiological mechanisms of magnetic field-induced circadian rhythm perturbation. This work aims to deepen the understanding of the mechanisms of the space magnetic environment on biological rhythms, and establish a scientific basis for formulating adaptive protective strategies centered on circadian regulation for astronauts, thereby ensuring the successful implementation of long-term deep-space missions.
Circadian Rhythm/physiology*
;
Humans
;
Magnetic Fields/adverse effects*
;
Space Flight
;
Animals
;
Extraterrestrial Environment
5.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
6.Common detoxification mechanisms in processing of toxic medicinal herbs of the same genus: a case study of Euphorbia pekinensis, E. ebracteolata, and E. fischeriana.
En-Ci JIANG ; Hong-Li YU ; Shu-Rui ZHANG ; Bing-Bing LIU ; Xin-Zhi WANG ; Hao WU
China Journal of Chinese Materia Medica 2025;50(13):3615-3675
Traditional Chinese medicine(TCM) processing is a specialized pharmaceutical technique with the primary objective of reducing the toxicity of medicinal substances. Euphorbia pekinensis, E. ebracteolata, and E. fischeriana, all belonging to Euphorbiaceae, are classified as drastic purgative herbs, traditionally used for eliminating retained water, reducing swelling, resolving toxicity, and dispersing masses. However, these herbs are also associated with adverse effects such as abdominal pain and diarrhea. Accordingly, they are commonly processed with vinegar, milk, or Terminalia chebula decoction to reduce the toxicity. This review summarizes the chemical constituents, pharmacological activities, historical evolution of processing methods, and detoxification mechanisms of the three toxic Euphorbia species. The primary toxic constituents are terpenoids. Specifically, E. ebracteolata and E. fischeriana are rich in diterpenoids, while E. pekinensis contains diterpenoids, triterpenoids, and sesquiterpenoids. Studies have shown that vinegar processing promotes structural transformations of diterpenoids, including ether bond hydrolysis, lactone ring opening, esterification, oxidation, and epoxide ring cleavage, thereby reducing the content and toxicity of these compounds. Milk processing facilitates the dissolution of toxic components into the residual liquid of excipients, leading to decreases in their concentrations in the final decoction pieces. Processing with T. chebula decoction raises the levels of tannin-derived phenolic acids, which antagonize the adverse effects of the intestine. These findings reveal a shared detoxification pattern among the three toxic herbs. Accordingly, this review proposes the concept of a shared detoxification mechanism for toxic herbs belonging to the same family or genus. That is, toxic herbs belonging to the same taxon often exhibit similar toxicological profiles and can undergo detoxification through the same processing methods, reflecting common underlying mechanisms. Investigating such shared mechanisms across multiple species of the same genus offers a promising research strategy. Ultimately, the research into processing-induced detoxification mechanisms provides both theoretical and practical support for ensuring the safety of toxic TCM.
Euphorbia/classification*
;
Drugs, Chinese Herbal/metabolism*
;
Humans
;
Animals
;
Inactivation, Metabolic
;
Medicine, Chinese Traditional
7.Research progress in mechanisms of kidney-tonifying traditional Chinese medicine in promoting healing of osteoporotic fractures.
Jun WU ; Ou-Ye LI ; Ken QIN ; Xuan WAN ; Wang-Bing XU ; Yong LI ; Jia-Wei ZHONG ; Yong-Xiang YE ; Rui XU
China Journal of Chinese Materia Medica 2025;50(15):4166-4177
Osteoporotic fractures(OPF) refer to the fractures caused by minor violence in the state of osteoporosis, seriously threatening the life and health of elderly patients. Drug and surgical therapies have limitations such as single targets, diverse adverse reactions, and poor prognosis. Kidney-tonifying traditional Chinese medicine(TCM) has good potential in the treatment of OPF. TCM can promote the healing of OPF by promoting angiogenesis in the early stage of bone healing, promoting osteogenic differentiation of bone marrow mesenchymal stem cells in the stage of bone repair, maintaining the balance of osteogenic and osteoclastic system in the stage of bone remodeling, and regulating the oxidative stress responses throughout the process of OPF healing. TCM can alleviate the pathological state of osteoporosis and promote fracture healing in OPF patients via multiple pathways and targets, demonstrating the advantages and potential of biphasic regulation.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Osteoporotic Fractures/metabolism*
;
Animals
;
Fracture Healing/drug effects*
;
Medicine, Chinese Traditional
;
Kidney/metabolism*
;
Osteogenesis/drug effects*
8.Research progress on prevention and treatment of hepatocellular carcinoma with traditional Chinese medicine based on gut microbiota.
Rui REN ; Xing YANG ; Ping-Ping REN ; Qian BI ; Bing-Zhao DU ; Qing-Yan ZHANG ; Xue-Han WANG ; Zhong-Qi JIANG ; Jin-Xiao LIANG ; Ming-Yi SHAO
China Journal of Chinese Materia Medica 2025;50(15):4190-4200
Hepatocellular carcinoma(HCC), the third leading cause of cancer-related death worldwide, is characterized by high mortality and recurrence rates. Common treatments include hepatectomy, liver transplantation, ablation therapy, interventional therapy, radiotherapy, systemic therapy, and traditional Chinese medicine(TCM). While exhibiting specific advantages, these approaches are associated with varying degrees of adverse effects. To alleviate patients' suffering and burdens, it is crucial to explore additional treatments and elucidate the pathogenesis of HCC, laying a foundation for the development of new TCM-based drugs. With emerging research on gut microbiota, it has been revealed that microbiota plays a vital role in the development of HCC by influencing intestinal barrier function, microbial metabolites, and immune regulation. TCM, with its multi-component, multi-target, and multi-pathway characteristics, has been increasingly recognized as a vital therapeutic treatment for HCC, particularly in patients at intermediate or advanced stages, by prolonging survival and improving quality of life. Recent global studies demonstrate that TCM exerts anti-HCC effects by modulating gut microbiota, restoring intestinal barrier function, regulating microbial composition and its metabolites, suppressing inflammation, and enhancing immune responses, thereby inhibiting the malignant phenotype of HCC. This review aims to elucidate the mechanisms by which gut microbiota contributes to the development and progression of HCC and highlight the regulatory effects of TCM, addressing the current gap in systematic understanding of the "TCM-gut microbiota-HCC" axis. The findings provide theoretical support for integrating TCM with western medicine in HCC treatment and promote the transition from basic research to precision clinical therapy through microbiota-targeted drug development and TCM-based interventions.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Carcinoma, Hepatocellular/microbiology*
;
Liver Neoplasms/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
9.Sperm tRNA-derived fragments expression is potentially linked to abstinence-related improvement of sperm quality.
Xi-Ren JI ; Rui-Jun WANG ; Zeng-Hui HUANG ; Hui-Lan WU ; Xiu-Hai HUANG ; Hao BO ; Ge LIN ; Wen-Bing ZHU ; Chuan HUANG
Asian Journal of Andrology 2025;27(5):638-645
Recent studies have shown that shorter periods of ejaculatory abstinence may enhance certain sperm parameters, but the molecular mechanisms underlying these improvements are still unclear. This study explored whether reduced abstinence periods could improve semen quality, particularly for use in assisted reproductive technologies (ART). We analyzed semen samples from men with normal sperm counts ( n = 101) and those with low sperm motility or concentration ( n = 53) after 3-7 days of abstinence and then after 1-3 h of abstinence, obtained from the Reproductive & Genetic Hospital of CITIC-Xiangya (Changsha, China). Physiological and biochemical sperm parameters were evaluated, and the dynamics of transfer RNA (tRNA)-derived fragments (tRFs) were analyzed using deep RNA sequencing in five consecutive samples from men with normal sperm counts. Our results revealed significant improvement in sperm motility and a decrease in the DNA fragmentation index after the 1- to 3-h abstinence period. Additionally, we identified 245 differentially expressed tRFs, and the mitogen-activated protein kinase (MAPK) signaling pathway was the most enriched. Further investigations showed significant changes in tRF-Lys-TTT and its target gene mitogen-activated protein kinase kinase 2 ( MAP2K2 ), which indicates a role of tRFs in improving sperm function. These findings provide new insights into how shorter abstinence periods influence sperm quality and suggest that tRFs may serve as biomarkers for male fertility. This research highlights the potential for optimizing ART protocols and improving reproductive outcomes through molecular approaches that target sperm function.
Male
;
Humans
;
Spermatozoa/metabolism*
;
RNA, Transfer/genetics*
;
Sperm Motility/genetics*
;
Adult
;
Semen Analysis
;
Sexual Abstinence/physiology*
;
Sperm Count
;
DNA Fragmentation
10.Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke.
Bing-Qiao WANG ; Yang-Ying DUAN ; Mao CHEN ; Yu-Fan MA ; Ru CHEN ; Cheng HUANG ; Fei GAO ; Rui XU ; Chun-Mei DUAN
Neuroscience Bulletin 2025;41(9):1522-1536
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Animals
;
Nitric Oxide Synthase Type III/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Integrin alpha6/genetics*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Stroke/pathology*
;
Vascular Remodeling/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Mice, Knockout
;
Signal Transduction/physiology*
;
Mice, Inbred C57BL
;
Male
;
Neovascularization, Physiologic/physiology*

Result Analysis
Print
Save
E-mail