1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
3.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
4.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.
5.Hearing loss prevalence and burden of disease in China: Findings from provincial-level analysis.
Yu WANG ; Yang XIE ; Minghao WANG ; Mengdan ZHAO ; Rui GONG ; Ying XIN ; Jia KE ; Ke ZHANG ; Shaoxing ZHANG ; Chen DU ; Qingchuan DUAN ; Fang WANG ; Tao PAN ; Furong MA ; Xiangyang HU
Chinese Medical Journal 2025;138(1):41-48
BACKGROUND:
Without timely and effective rehabilitation, hearing loss may profoundly affect human life quality. China has a large population of hearing-impaired individuals, which imposes a heavy health burden on society. Moreover, this population is projected to increase rapidly owing to China's aging society.
METHODS:
We used data from a population-representative epidemiological investigation of hearing loss and ear diseases in four Chinese provinces. We estimated the national prevalence using multiple linear regression of the age-group proportions and prevalence in 31 provinces with clustering analysis. We used years lived with disability (YLDs) to analyze the disease burden and forecasted the prevalence of hearing loss by 2060 in China.
RESULTS:
An estimated 115 million people had moderate-to-complete hearing loss in 2015 across the 31 provinces of China (8.4% of 1.37 billion people). Of these, 85.7% were older than age 50 years (99 million people) and 2.4% were younger than 20 years old (2.8 million people). Of all YLDs attributable to hearing loss, 68.9% were attributable to moderate-to-complete cases. By 2060, a projected 242 million people in China will have moderate-to-complete hearing loss, a 110.0% increase from 2015.
CONCLUSIONS
The hearing loss prevalence in China is high. Population aging and socioeconomic factors substantially affect the prevalence and severity of hearing loss and the disease burden. The prevalence and severity of hearing loss are unevenly distributed across different provinces. Future public health policies should take these trends and regional variations into account.
Humans
;
China/epidemiology*
;
Hearing Loss/epidemiology*
;
Prevalence
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Aged, 80 and over
;
Cost of Illness
6.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
7.Effect and mechanism of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance based on network pharmacology and experimental verification.
Jin-Jie LEI ; Yang-Miao XIA ; Shang-Ling ZHAO ; Rui TAN ; Ling-Ying YU ; Zhi-Min CHEN
China Journal of Chinese Materia Medica 2025;50(9):2373-2381
This study explores the therapeutic differences and mechanisms of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance(IR) based on network pharmacology, molecular docking, and cellular experiments. The components and intersection targets of Phellodendri Chinensis Cortex in improving IR were collected from databases, and a "drug-component-target-disease" network and protein-protein interaction(PPI) network were constructed to screen core components and targets. A total of 29 active components and 240 intersection targets were identified, of which 13 were core targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were used to identify key signaling pathways, and molecular docking was performed to validate the binding activity between core components and targets. An IR model in HepG2 cells was induced using insulin combined with high glucose, and the effects of Phellodendri Chinensis Cortex before and after salt-processing on cell glucose consumption were evaluated. The expression of proteins related to the mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) signaling pathways was detected by Western blot. The cellular experimental results showed that, compared with the model group, glucose consumption in the drug-treated groups was significantly increased(P<0.01), the phosphorylation level of extracellular regulated protein kinase(ERK) was decreased(P<0.05), the phosphorylation levels of PI3K and AKT were increased, and the expression of glucose transporter 4(GLUT4) was also upregulated(P<0.05). Furthermore, the effect of salt-processed Phellodendri Chinensis Cortex was better than that of raw Phellodendri Chinensis Cortex. The study demonstrates that Phellodendri Chinensis Cortex, both before and after salt-processing, improves IR by regulating the expression of related proteins in the MAPK and PI3K-AKT signaling pathways, with enhanced effects after salt-processing.
Humans
;
Network Pharmacology
;
Phellodendron/chemistry*
;
Insulin Resistance
;
Drugs, Chinese Herbal/chemistry*
;
Hep G2 Cells
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Glucose/metabolism*
8.Stimulation mechanism of osteoblast proliferation and differentiation by Duzhong Decoction-containing serum through L-VGCCs.
Ze-Bin CHEN ; Lan-Lan LUO ; Xin-Yi SHI ; Rui-Tong ZHAO ; Cai-Xian HU ; Yun-Ying FU ; Su-Zhen CHAO ; Bo LIU
China Journal of Chinese Materia Medica 2025;50(12):3335-3345
This paper aimed to explore the effects of Duzhong Decoction(DZD)-containing serum on the proliferation and osteoblast differentiation of MC3T3-E1 cells through L-type voltage-gated calcium channels(L-VGCCs). L-VGCCs inhibitors, nifedipine and verapamil, were used to block L-VGCCs in osteoblasts. MC3T3-E1 cells were divided into a control group, a low-dose DZD-containing serum(L-DZD) group, a medium-dose DZD-containing serum(M-DZD) group, a high-dose DZD-containing serum(H-DZD) group, a nifedipine group, a H-DZD + nifedipine group, verapamil group, and a H-DZD + verapamil group. The CCK-8 method was used for cell proliferation analysis, alkaline phosphatase(ALP) assay kits for intracellular ALP activity measurement, Western blot for protein expression level in cells, real-time fluorescence quantitative PCR technology for intracellular mRNA expression level determination, fluorescence spectrophotometer for free Ca~(2+) concentration determination in osteoblasts, and alizarin red staining(ARS) for mineralized nodule formation in osteoblasts. The experimental results show that compared to the control group, DZD groups can promote MC3T3-E1 cell proliferation, ALP activity, and mineralized nodule formation, increase intracellular Ca~(2+) concentrations, and upregulate the protein expression of bone morphogenetic protein 2(BMP2), collagen Ⅰ(COL1), α2 subunit protein of L-VGCCs(L-VGCCα2), and the mRNA expression of Runt-related transcription factor 2(RUNX2), and BMP2. After blocking L-VGCCs with nifedipine and verapamil, the intervention effects of DZD-containing serum were inhibited to varying degrees. Both nifedipine and verapamil could inhibit ALP activity, reduce mineralized nodule areas, and downregulate the expression of bone formation-related proteins. Moreover, the effects of DZD-containing serum on increasing MC3T3-E1 cell proliferation, osteoblast differentiation, and Ca~(2+) concentrations, upregulating the mRNA expression of osteoprotegerin(OPG) and protein expression of phosphorylated protein kinase B(p-Akt) and phosphorylated forkhead box protein O1(p-FOXO1), and upregulating phosphatase and tensin homolog(PTEN) expression were reversed by nifedipine. The results indicate that DZD-containing serum can increase the Ca~(2+) concentration in MC3T3-E1 cells to promote bone formation, which may be mediated by L-VGCCs and the PTEN/Akt/FoxO1 signaling pathway, providing a new perspective on the mechanism of DZD in treating osteoporosis.
Animals
;
Osteoblasts/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Differentiation/drug effects*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Calcium Channels, L-Type/genetics*
;
Alkaline Phosphatase/genetics*
;
Serum/chemistry*
;
Cell Line
;
Osteogenesis/drug effects*
;
Bone Morphogenetic Protein 2/genetics*
10.The Impacts of Climate Change on the Environment and Human Health in China: A Call for more Ambitious Action.
Shi Lu TONG ; Yu WANG ; Yong Long LU ; Cun de XIAO ; Qi Yong LIU ; Qi ZHAO ; Cun Rui HUANG ; Jia Yu XU ; Ning KANG ; Tong ZHU ; Dahe QIN ; Ying XU ; Buda SU ; Xiao Ming SHI
Biomedical and Environmental Sciences 2025;38(2):127-143
As global greenhouse gases continue rising, the urgency of more ambitious action is clearer than ever before. China is the world's biggest emitter of greenhouse gases and one of the countries affected most by climate change. The evidence about the impacts of climate change on the environment and human health may encourage China to take more decisive action to mitigate greenhouse gas emissions and adapt to climate impacts. This article aimed to review the evidence of environmental damages and health risks posed by climate change and to provide a new science-based perspective for the delivery of sustainable development goals. Over recent decades, China has experienced a strong warming pattern with a growing frequency of extreme weather events, and the impacts of climate change on China's environment and human health have been consistently observed, with increasing O 3 air pollution, decreases in water resources and availability, land degradation, and increased risks for both communicable and non-communicable diseases. Therefore, China's climate policy should target the key factors driving climate change and scale up strategic measures to curb carbon emissions and adapt to inevitable increasing climate impacts. It provides new insights for not only China but also other countries, particularly developing and emerging economies, to ensure climate and environmental sustainability whilst pursuing economic growth.
Climate Change
;
China
;
Humans
;
Greenhouse Gases
;
Air Pollution
;
Sustainable Development
;
Environment

Result Analysis
Print
Save
E-mail