1.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
2.Measurement and analysis of radiation doses received by the human body and radiation levels in the CT room under digital miniature CT scanning conditions
Lin YIN ; Zhenhua YANG ; Yaqi XI ; Wenlong FAN ; Rui YANG ; Qisheng XIA ; Qiaoling WU
Chinese Journal of Radiological Health 2025;34(3):373-377
Objective To evaluate the radiation impact of a self-developed digital miniature CT on the human body and the environment under simulated scanning conditions, and verify its safety and regulatory compliance. Methods Under typical head scanning conditions with the digital miniature CT (70 kV/10 mA), the equivalent doses received at the body surface sites corresponding to the thyroid, breast, stomach, liver, kidney, and gonads of the phantom were measured without protection and with 0.5 mmPb equivalent protection using LiF (Mg, Cu, P) thermoluminescent dosimeters. The ambient dose equivalent rates at the bed level inside the CT room at different directions and distances from the scanning center were measured using a model AT1121 X/γ dosimeter. The equivalent doses of organs on both sides of the phantom and the ambient equivalent dose rates on the left and right sides of the longitudinal axis of the bed in the CT room were compared. The Mann-Whitney test was used at a significance level of P < 0.05. Results During a single scan of the head with the digital miniature CT, the equivalent doses at the body surface sites corresponding to the thyroid, breast, stomach, liver, kidney, and gonads without protection were 1.04, 0.95, 0.55, 0.57, 0.40, and 0.12 mSv, respectively, which were only 0.84% to 8.24% of the doses inside the irradiation field. With 0.5 mm Pb equivalent protection, the equivalent dose of the thyroid decreased from 8.24 mSv to 3.27 mSv with a reduction of 60.3%, and the doses of the other organs were reduced to 1.5-11.5 μSv with the maximum reduction of 14 times. In the longitudinal axis direction of the CT bed, the ambient dose equivalent rate at a distance of 2 m from the scanning center was reduced to 0.066 mSv/h, which was only 9.6% of the ambient equivalent dose rate at a distance of 50 cm from the scanning center. Conclusion The digital miniature CT has advantages in ensuring patient safety, optimizing imaging quality, and promoting technological development, demonstrating promising application potential. However, the radiation protection of personal and CT room should not be ignored.
3.Observation on the effect of atomization fumigation of self-formulated Zhibai Dihuang Decoction on dry eyes after diabetic cataract surgery
Jingjing XIA ; Xueyong LI ; Rui LIU ; Zhuya WANG ; Qiuzi LIU ; Ying ZHOU
International Eye Science 2025;25(10):1708-1712
AIM: To explore the clinical effect of atomization fumigation of self-formulated Zhibai Dihuang Decoction in the treatment of dry eye syndrome after diabetic cataract(DC)surgery with Yin deficiency and dry heat pattern.METHODS: This study is a prospective controlled study. From February 2022 to June 2024, 80 patients(97 eyes)with Yin deficiency and dry heat type DC postoperative dry eye who met the inclusion and exclusion criteria in our hospital were selected. They were randomly divided into an observation group of 40 cases(49 eyes)and a control group of 40 cases(48 eyes)using a random number table method. The control group was treated with sodium hyaluronate eye drops, while the observation group was treated with a combination of atomization fumigation of self-formulated Zhibai Dihuang Decoction on the basis of the control group. The clinical efficacy, subjective symptom scores, visual indicators [tear film break-up time(BUT), Schirmer's test(SIt), corneal fluorescein staining(FL)], tear inflammatory factors [interleukin-1 β(IL-1β), macrophage chemoattractant protein-1(MCP-1), lipid peroxidation(LPO)], and safety between the two groups.RESULTS: The improvement rate of the observation group was 96%, which was higher than that of the control group(79%, P<0.05). After treatment, the 4 subjective symptom scores in both groups were lower than those before treatment, and the subjective symptom scores of ocular dryness, foreign body sensation, burning sensation, and photophobia in the observation group were lower than those in the control group(all P<0.05). After treatment, BUT and SIt in both groups were higher than those before treatment, and FL was lower than that before treatment, with the observation group having higher BUT and SIt and lower FL than the control group(all P<0.05). After treatment, IL-1β, MCP-1, and LPO in both groups were lower than those before treatment, and the observation group had lower levels of IL-1β, MCP-1, and LPO than the control group(all P<0.05). No adverse reactions were observed in either group.CONCLUSION: The atomization and fumigation of self-formulated Zhibai Dihuang Decoction is significantly effective in treating dry eye syndrome after DC surgery with Yin deficiency and dry heat pattern. It can effectively reduce subjective symptom scores, improve visual indicators and tear inflammatory factors, and has a high level of safety.
4.Effect and Mechanism of Total Saponins from Panax Japonicus on White Adipose Tissue Browning/Brown Adipose Tissue Activation in High-fat Diet-induced Mice
Shuwen WANG ; Yaqi HU ; Rui WANG ; Yifan ZHANG ; Mengzhen XUE ; Yaqi WANG ; Fangqi XIA ; Leiqi ZHU ; Chengfu YUAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):71-78
ObjectiveTo investigate the effect and mechanism of total saponins from Panax japonicus (TSPJ) on white adipose tissue (WAT) browning/brown adipose tissue (BAT) activation in C57BL6/J male mice fed on a high-fat diet (HFD). MethodThirty-two C57BL6/J male mice (8-week-old) were randomly divided into a normal group, a model group, a low-dose TSPJ group, and a high-dose TSPJ group. The mice in the low-dose and high-dose TSPJ groups were given TSPJ for four months by gavage at 25, 75 mg·kg-1·d-1, respectively, and those in the other groups were given 0.5% sodium carboxymethyl cellulose (CMC-Na) accordingly. After four months of feeding, all mice were placed at 4 ℃ for acute cold exposure, and the core body temperature was monitored. Subsequently, all mice were sacrificed, and BAT and inguinal WAT (iWAT) were separated rapidly to detect the corresponding indexes. Hematoxylin-eosin (HE) staining was used to observe the morphological changes in each group. The effect of TSPJ on the mRNA expression of uncoupling protein 1 (UCP1), fatty acid-binding protein 4 (FABP4), cytochrome C (CytC), PR domain-containing protein 16 (PRDM16), elongation of very long chain fatty acids protein 3 (ELOVL3), peroxisome proliferator-activated receptor γ (PPARγ), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in iWAT and BAT was detected by Real-time polymerase chain reaction (Real-time PCR). Western blot was also used to detect the protein expression of UCP1, PRDM16, PPARγ, and PGC-1α in BAT and iWAT of each group. The effect of TSPJ on UCP1 expression in BAT and iWAT was detected by immunohistochemistry. Result① Compared with the model group, TSPJ could decrease the body weight and proportions of iWAT and BAT in the HFD-induced mice (P<0.05, P<0.01). ② The body temperature of mice in the model group decreased compared with that in the normal group in the acute cold exposure tolerance test (P<0.05). The body temperature in the high-dose TSPJ group increased compared with that in the model group (P<0.01). ③ Compared with the normal group, the model group showed increased adipocyte diameter in iWAT and BAT and decreased number of adipocytes per unit area. Compared with the model group, the TSPJ groups showed significantly reduced cell diameter and increased number of cells per unit area, especially in the high-dose TSPJ group. ④ Compared with the normal group, the model group showed decreased mRNA expression of FABP4, UCP1, CytC, PRDM16, ELOVL3, PGC-1α, and PPARγ in adipose tissues of mice (P<0.05, P<0.01). Compared with the model group, after intervention with TSPJ, the mRNA expression was significantly up-regulated (P<0.05, P<0.01). ⑤ Compared with the normal group, the model group showed decreased protein expression of UCP1, PRDM16, PPARγ, and PGC-1α in adipose tissues of mice (P<0.05, P<0.01). Compared with the model group, after intervention with TSPJ, the protein expression increased significantly (P<0.05, P<0.01). ConclusionTSPJ could induce the browning of iWAT/BAT activation and enhance adaptive thermogenesis in obese mice induced by HFD. The underlying mechanism may be attributed to the activation of the PPARγ/PGC-1α signaling pathway.
5.Inhibitory effects of toosendanin on in vitro and in vivo growth of lung adenocarcinoma cells by regulating CDCA5 expression
Zhi-Cheng ZHANG ; Li-Xia SU ; Rui-Ling MENG ; Wen-Juan GUAN ; Hong-Qian LI
The Chinese Journal of Clinical Pharmacology 2024;40(7):994-998
Objective To investigate the inhibitory effect of toosendanin on the growth of lung adenocarcinoma cells in vitro and in vivo by regulating the expression of cell division cycle associated protein 5(CDCA5).Methods The expression of CDCA5 in different lung tissues was analyzed in TCGA database.The expression level of CDCA5 in BEAS-2B cells and A549 cells was detected by Western blot.The effect of different concentrations of toosendanin on the viability of A549 cells was determined by cell counting kit-8(CCK-8)assay.The A549 cells were randomly divided into 4 groups:control group(normal cells cultured normally),toosendanin group(normal cells cultured with 40 μmol·L-1 toosendanin),toosendanin+pcDNA group(cells transfected with pcDNA empty vector and cultured with 40 μmol·L-1 toosendanin),and toosendanin+CDCA5 group(cells transfected with CDCA5 overexpression vector and cultured with 40 μmol·L-1 toosendanin).After 48 h of cultivation,the proliferation and apoptosis of each group of cells were detected by CCK-8 and flow cytometry,and the expression of proliferation and apoptosis related proteins in each group of cells was detected by Western blot.The BALB/c nude mice were randomly divided into sh-NC and sh-CDCA5 stable transfected cell lines with nude mouse xenograft models.Daily intraperitoneal injection of 0.9%NaCl and 40μmol·L-1 toosendanin solution was given to observe and record the changes in tumor tissue volume and body mass.Results The results of CCK-8 showed that after 48 hours,the survival rates of A549 cells treated with 10,20,30,40,50,60 and 70 μmol·L-1 toosendanin were(80.74±8.71)%,(72.96±6.53)%,(61.01±4.86)%,(51.20±3.13)%,(42.10±5.94)%,(38.93±3.18)%and(33.48±2.94)%,respectively.Toosendanin significantly inhibited the proliferation of A549 cells.The proliferation rates of cells in the control group,toosendanin group,toosendanin+pcDNA group,and toosendanin+CDCA5 group were(100.00±4.19)%,(49.18±6.70)%,(55.75±5.74)%,and(77.66±7.48)%,respectively;the expression levels of CDCA5 protein were 1.08±0.11,0.44±0.04,0.43±0.05 and 0.99±0.10,respectively.The expression levels of CDCA5 protein in tumor tissues of nude mice in the sh-NC group,sh-CDCA5 group,toosendanin+sh-NC group,and toosendanin+sh-CDCA5 group were 1.04±0.14,0.42±0.04,0.56±0.08 and 0.32±0.04,respectively.Compared with the sh-NC group,the tumor blocks formed by nude mice in other groups were significantly smaller,and the tumor volume and weight were significantly lower(all P<0.05).Compared with the toosendanin+sh-NC group,the toosendanin+sh-CDCA5 group had more significant inhibitory effect on tumor formation,and the difference was statistically significant(P<0.05).Conclusion Toosendanin can inhibit the growth of lung adenocarcinoma cells in vitro and in vivo,which is mainly related to the inhibition of CDCA5 expression.
6.Exploring the effects of sildenafil on testicular of rats with erectile dysfunction based on RIP1/RIP3
Yu-Lian LIU ; Li-Pan NIU ; Pei YANG ; Rui ZHANG ; Feng-Xia LIU
The Chinese Journal of Clinical Pharmacology 2024;40(13):1938-1942
Objective To investigate the role of programmed necrosis pathway in testicular tissue damage in rats with erectile dysfunction(ED)and the mechanism of sildenafil intervention.Methods An ED rat model was established by high-fat chow feeding,and the rats were randomly divided into model group,experimental group,interleukin 18 group,and experimental+interleukin 18 group;10 rats were randomly selected as the normal control group.The experimental group was gavaged with 20 mg·kg-1sildenafil;the interleukin 18 group was injected intraperitoneally with 0.2 μg·kg-1interleukin 18 recombinant protein;the experimental+interleukin 18 group was gavaged with an equal amount of sildenafil,and the experimental+interleukin 18 group was injected intraperitoneally with an equal amount of interleukin 18 recombinant protein;the normal control and model groups were given with an equal amount of 0.9%NaCl by gavage and intraperitoneally injected with an equal amount of saline;and the experimental group was injected with an equal amount of 0.9%NaCl.Interleukin 18 group was gavaged with an equal amount of 0.9%NaCl,and the five groups of rats were administered once a day at regular intervals for 14 consecutive days.Reverse transcription polymerase chain reaction(RT-qPCR)and Western blotting were used to detect the expression of receptor-interacting protein kinase 1(RIP1),receptor-interacting protein kinase 3(RIP3),mixed-spectrum kinase structural domain-like protein(MLKL),and calcium-calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)in rat testis tissues.Results The relative expression levels of RIP1 protein in the normal control group,model group,experimental group,interleukin 18 group and experimental+interleukin 18 group were 0.58±0.05,0.99±0.09,0.71±0.05,1.23±0.07 and 0.81±0.07;the relative expression levels of RIP3 protein were 0.61±0.05,1.05±0.10,0.77±0.04,1.19±0.07 and 0.84±0.08,respectively;the relative expression levels of MLKL protein were 0.63±0.05,1.13±0.08,0.79±0.05,1.30±0.02 and 1.00±0.04,respectively;the relative expression levels of CaMK Ⅱ protein were 0.54±0.04,1.12±0.07,0.77±0.05,1.36±0.04 and 1.00±0.07;the differences of the above indexes were statistically significant when the model group was compared with the normal control group,the experimental group was compared with the model group,the interleukin 18 group was compared with the model group,and the experimental+interleukin 18 group was compared with the interleukin 18 group(all P<0.05).Conclusion The RIP1/RIP3-mediated necroptosis pathway plays multiple regulatory roles in testicular injury in ED rats,and sildenafil may improve testicular function in rats by inhibiting the above necroptosis signaling pathway.
7.Establishment of Rat Karoshi Model and Model-based Proteomic and Metabolomic Analyses of Energy Metabolism and Oxidative Stress
Jia-Min LI ; Rui-Bing SU ; Xiao-Jun YU ; Yong-Xia ZHENG
Progress in Biochemistry and Biophysics 2024;51(8):1935-1949
ObjectiveKaroshi, death from overwork, is a serious problem with unclear identification standards and mechanisms. This study aims to establish a karoshi rat model by integrating weight-bearing swimming and sleep deprivation. This model will enable us to investigate the adverse effects of acute physical and mental fatigue on cardiac functions and explore the response mechanisms to overwork using integrated omics approaches, specifically metabonomics and proteomics. MethodsThe experimental design involved healthy male sprague-dawley (SD) rats subjected to weight-bearing swimming and sleep deprivation for 7 d. The rats were monitored for changes in physiological function indexes, including electrocardiogram and respiration. Protein digestion, iTRAQ labeling, and quantitative data analyses were performed to determine differentially expressed proteins (DEPs). Additionally, GC-MS analysis was conducted to identify differential metabolites. The integration analysis of differential metabolites and proteins shared by the fatigue group and the overwork group was performed to construct a relevant metabolic pathway network and integrate the proteomics and metabolomics data. Statistical analysis was carried out using one-way ANOVA and Duncan’s multiple range t-tests. ResultsThe rats subjected to weight-bearing swimming and sleep deprivation showed various physical and behavioral changes associated with fatigue, including hair disorder, decreased muscle tension, reduced food intake, and weight loss. Analysis of cardiac functions revealed cardiac hypertrophy and heart failure in the fatigue and karoshi groups, as evidenced by changes in heart color, myocardial fiber structure, heart rate, respiratory rate, and cardiac ultrasound measurements. Metabolomics analysis using GC-MS identified several differential metabolites in response to overwork, including amino acids involved in various metabolic pathways. Proteomic analysis using iTRAQ technology identified DEPs in the fatigue and karoshi groups, with a subset of DEPs shared by both groups. The GO analysis revealed that the up-regulated DEPs were primarily associated with mitochondria and peroxisomes in the cellular component category. The Reactome analysis further highlighted the enrichment of DEPs in the transfer of ferriheme from methemoglobin to hemopexin pathway. Integration analysis of the DEPs and differential metabolites revealed the activation of autophagy, increased mitochondrial oxidative phosphorylation, enhanced branched-chain amino acid degradation, and altered peroxisomal β-oxidation. These findings suggested complex metabolic adaptations to meet the increased energy demands during overwork while also dealing with oxidative stress. Furthermore, the reprogramming of energy metabolism was observed, with upregulation of fatty acid β-oxidation enzymes and glycolysis-related enzymes in the fatigue group, indicating a shift towards glucose metabolism. In contrast, the karoshi group showed a decreased dependence on fatty acids as an energy source and increased utilization of glucose. The model proposed in this study highlights the interconnected metabolic changes involving mitochondria, peroxisomes, and lysosomes in response to overwork. The findings contribute to our understanding of the mechanisms involved in overwork-related pathologies and provide a basis for further research in the field of karoshi. ConclusionOverall, metabolic reprogramming might provide sufficient energy to the heart, alleviate oxidative stress and damage to cardiac cells in response to excessive exertion and fatigue. Our findings provide an insight into response mechanism to overwork death and lay a foundation for further research on overwork death.
8.Correlation of CD200-CD200R axis and diseases and its research progress
Han XU ; Yu-xin BI ; Gui-xia LI ; Jian LI ; Liu-li WANG ; Rui-jia HAO ; Xue-min ZHENG ; Rui-jing HUANG ; Jin HAN ; Fei LI ; Gen-bei WANG
Acta Pharmaceutica Sinica 2024;59(4):822-830
CD200 and its receptor CD200R constitute an endogenous inhibitory signal. The binding of CD200 and CD200R can regulate the immune response to pathogenic stimuli, which has received much attention in recent years. It has been found that CD200-CD200R is involved in the regulation of many kinds of pathological inflammation, including autoimmune diseases, cardiac cerebrovascular disease, infection and tumor. This paper reviews the protein structure, distribution, expression, biological function of CD200-CD200R and the correlation with diseases, and analyses the current status and development ideas of CD200-CD200R as drug targets. It aims to provide theoretical support for new drug research and development based on this target.
9.Identification of HCoV-229E Interacting Host Factor by Utilization of Proximity Labeling-Mass Spectrometry Technique
Rui-Xia JU ; Hao-Yong WANG ; Hai-Nan LIU ; Xuan LIU ; Cheng CAO
Progress in Biochemistry and Biophysics 2024;51(11):3011-3020
ObjectiveCoronavirus is a class of long-standing pathogens, which are enveloped single-stranded positive-sense RNA viruses. The genome all encodes 4 structural proteins: spike protein (S), nucleocapsid protein (N), membrane protein (M), and envelope protein (E). The nucleocapsid protein (NP) serves as a key structural component of coronaviruses, playing a vital function in the viral life cycle. NP acts as an RNA-binding protein, with a critical role in identifying specific sequences within the viral genome RNA, facilitating the formation of ribonucleoprotein (RNP) complexes with viral RNA to stabilize the viral genome and contribute to viral particles assembly. The NP consists of two primary structural domains, the N-terminal domain (NTD) and the C-terminal domain (CTD). The NTD is primarily responsible for RNA binding, whereas the CTD is involved in polymerization. The N protein demonstrated to trigger the host immune response and to modulate the cell cycle of infected cells by interacting with host proteins. The NP, one of the most abundant protein in coronaviruses, is essential in understanding the pathogenic mechanism of coronaviruses through its interaction with host factors, which response for determining the virus pathogenicity. HCoV-229E is a widely distributed coronavirus that typically causes mild upper respiratory tract diseases, accounting for a significant portion of common cold cases. However, its pathogenicity is notably lower compared to other coronaviruses like MERS-CoV, SARS-CoV, and SARS-CoV-2. The exact molecular mechanism behind remains unexplained, and how HCoV-229E N protein influences virus replication, host antiviral immunity, and pathogenesis need to be further explored. MethodsProximity labeling-mass spectrometry technique and bioinformatics analysis were used to screen for potential host factors interacting with the NP of human coronavirus 229E (HCoV-229E). In this study, a recombinant adenovirus Ad-V5-NPHCoV-229E-TurboID was constructed to express the fusion protein of HCoV-229E NP and biotin ligase (TurboID). A549 cells were infected with the Ad-V5-NPHCoV-229E-TurboID. After 30 min biotin treatment, NP interacting proteins were labeled with biotin by biotin ligase, and subsequently isolated with streptavidin cross-linked magnetic beads. The potential interacting proteins were identified using label-free proteomic mass spectrometry and further validated through immunoprecipitation and immunofluorescence assays. ResultsWe identified a total of 584 potential interacting proteins. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted the enrichment of glycogen synthase kinase (GSK)3A and GSK3B in the glycolysis/gluconeogenesis pathway, indicating HCoV-229E NP connection to diabetes through aberrant activity. Moreover, SARS-CoV-2 infection can exacerbate hyperglycemia and metabolic dysregulation in diabetic individuals by activating the ACE2 receptor. Moreover, SARS-CoV-2 was observed to cause potentially harm to pancreatic β‑cells and leading to insulin deficiency, which not only worsens the condition of diabetic patients but also raises the possibility of new-onset diabetes in non-diabetic individuals. We demonstrated that GSK3A and GSK3B interacted with NP of HCoV-229E, suggesting that the NP may engage in various coronavirus pathogenic processes by interacting with GSK3. ConclusionThese findings suggest that proximity labeling-mass spectrometry technique is a valuable tool for identifying virus-host interaction factors, and lay the foundation for future investigations into the mechanisms underlying coronavirus replication, proliferation, and pathogenesis.
10.Study on the material basis and molecular mechanism of Rhei Radix et Rhizoma-Persicae Semen combination in activating blood circulation and dispelling blood stasis based on efficacy experiments, network pharmacology and HPLC
Lin ZHU ; Ying LIU ; Jie SHEN ; Bo-rui LI ; Ke-xin YUE ; Xia SHEN ; Fan PING
Acta Pharmaceutica Sinica 2024;59(7):2126-2134
In this study, the effective substance group and molecular mechanism of Rhei Radix et Rhizoma-Persicae Semen combination (RRR-PS) in activating blood circulation and dispelling blood stasis were investigated by integrating efficacy experiments, network pharmacology and HPLC. The rat model of blood stasis syndrome was established, and the blood rheology index and coagulation four comprehensive evaluation were carried out. The results showed that compared with the model group, the whole blood viscosity, erythrocyte sedimentation rate and erythrocyte aggregation index of the rats in the RRR-PS group were significantly callback (

Result Analysis
Print
Save
E-mail