1.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
2.Artificial intelligence in prostate cancer.
Wei LI ; Ruoyu HU ; Quan ZHANG ; Zhangsheng YU ; Longxin DENG ; Xinhao ZHU ; Yujia XIA ; Zijian SONG ; Alessia CIMADAMORE ; Fei CHEN ; Antonio LOPEZ-BELTRAN ; Rodolfo MONTIRONI ; Liang CHENG ; Rui CHEN
Chinese Medical Journal 2025;138(15):1769-1782
Prostate cancer (PCa) ranks as the second most prevalent malignancy among men worldwide. Early diagnosis, personalized treatment, and prognosis prediction of PCa play a crucial role in improving patients' survival rates. The advancement of artificial intelligence (AI), particularly the utilization of deep learning (DL) algorithms, has brought about substantial progress in assisting the diagnosis, treatment, and prognosis prediction of PCa. The introduction of the foundation model has revolutionized the application of AI in medical treatment and facilitated its integration into clinical practice. This review emphasizes the clinical application of AI in PCa by discussing recent advancements from both pathological and imaging perspectives. Furthermore, it explores the current challenges faced by AI in clinical applications while also considering future developments, aiming to provide a valuable point of reference for the integration of AI and clinical applications.
Humans
;
Prostatic Neoplasms/diagnosis*
;
Male
;
Artificial Intelligence
;
Deep Learning
;
Prognosis
3.Comparison of therapeutic effects of tibial transverse transport microcirculation reconstruction and periosteal distraction in the treatment of early diabetic foot.
Bi-Hui SONG ; Kang-Quan SHOU ; Tong-Zhu BAO ; Hua-Rui YANG ; Ya-Dong TAN
China Journal of Orthopaedics and Traumatology 2025;38(9):910-916
OBJECTIVE:
To compare clinical efficacy of tibial transverse transport (TTT) microcirculation reconstruction and periosteal distraction in treating patients with early diabetic foot(DF).
METHODS:
From June 2021 to June 2024, 60 patients with DF were admitted and divided into bone transport group and stretch group according to different treatment methods. There were 30 patients in bone transport group, including 16 males and 14 females;aged from 48 to 65 years old with an average of (55.59±3.78) years old;the course of disease ranged from 2 to 9 months with an average of(5.95±1.32) months;TTT microcirculation reconstruction surgery was performed. There were 30 patients in distraction group, including 17 males and 13 females;aged from 47 to 67 years old with an average of (55.24±3.81) years old;the course of disease ranged from 2 to 10 months with an average of (5.68±1.54) months;periosteal distraction surgery was performed. The skin temperature of the affected feet, the time of getting out of bed and walking after operation, the time of full weight-bearing, the wound healing time and complications were compared between two groups;the pain was evaluated by visual analogue scale (VAS) before operation and one month after operation respectively;the changes of blood flow velocity of dorsal foot arteries, ankle brachial index(ABI), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) before and after operation at 3 months were compared between two groups.
RESULTS:
All patients were followed up for 3 to 4 months with an average of (3.52±0.12) months. There were no statistically significant differences in comparison of foot skin temperature, postoperative walking time, full weight-bearing time and complications between two groups (P>0.05). The wound healing time of bone transport group (61.26±7.31) days was shorter than that of distraction group (70.17±7.15) days, and the difference was statistically significant (P<0.05). Postoperative VAS at 1 month of bone transport group (2.19±0.21) was lower than that of distraction group (2.55±0.20), and the difference was statistically significant (P<0.05). At 3 months after operation, the blood flow velocity of dorsal foot artery, ankle-brachial index, EGF and bFGF in bone transport group were(34.73±4.18) cm·s-1, (0.95±0.13), (716.61±71.13) pg·ml-1 and (175.69±31.28) pg·ml-1, respectively;which were higher than that of distraction group (31.86±3.23) cm·s-1, (0.84±0.11), (677.37±70.21) pg·ml-1, (149.26±30.13) pg·ml-1, and the differences were statistically significant (P<0.05). There was no recurrence of ulcers in situ or at other sites in both groups during follow-up.
CONCLUSION
Compared with periosteal distraction, TTT microcirculation reconstruction surgery has a definite effect in the treatment of early DF. It could effectively reduce pain level, improve blood flow indicators and vascular endothelial function of the foot, and has a relatively high safety.
Humans
;
Male
;
Female
;
Middle Aged
;
Aged
;
Tibia/blood supply*
;
Diabetic Foot/physiopathology*
;
Microcirculation
;
Periosteum/surgery*
;
Plastic Surgery Procedures/methods*
;
Osteogenesis, Distraction
4.Liang-Ge-San Decoction Ameliorates Acute Respiratory Distress Syndrome via Suppressing p38MAPK-NF-κ B Signaling Pathway.
Quan LI ; Juan CHEN ; Meng-Meng WANG ; Li-Ping CAO ; Wei ZHANG ; Zhi-Zhou YANG ; Yi REN ; Jing FENG ; Xiao-Qin HAN ; Shi-Nan NIE ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(7):613-623
OBJECTIVE:
To explore the potential effects and mechanisms of Liang-Ge-San (LGS) for the treatment of acute respiratory distress syndrome (ARDS) through network pharmacology analysis and to verify LGS activity through biological experiments.
METHODS:
The key ingredients of LGS and related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. ARDS-related targets were selected from GeneCards and DisGeNET databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed using the Metascape Database. Molecular docking analysis was used to confirm the binding affinity of the core compounds with key therapeutic targets. Finally, the effects of LGS on key signaling pathways and biological processes were determined by in vitro and in vivo experiments.
RESULTS:
A total of LGS-related targets and 496 ARDS-related targets were obtained from the databases. Network pharmacological analysis suggested that LGS could treat ARDS based on the following information: LGS ingredients luteolin, wogonin, and baicalein may be potential candidate agents. Mitogen-activated protein kinase 14 (MAPK14), recombinant V-Rel reticuloendotheliosis viral oncogene homolog A (RELA), and tumor necrosis factor alpha (TNF-α) may be potential therapeutic targets. Reactive oxygen species metabolic process and the apoptotic signaling pathway were the main biological processes. The p38MAPK/NF-κ B signaling pathway might be the key signaling pathway activated by LGS against ARDS. Moreover, molecular docking demonstrated that luteolin, wogonin, and baicalein had a good binding affinity with MAPK14, RELA, and TNF α. In vitro experiments, LGS inhibited the expression and entry of p38 and p65 into the nucleation in human bronchial epithelial cells (HBE) cells induced by LPS, inhibited the inflammatory response and oxidative stress response, and inhibited HBE cell apoptosis (P<0.05 or P<0.01). In vivo experiments, LGS improved lung injury caused by ligation and puncture, reduced inflammatory responses, and inhibited the activation of p38MAPK and p65 (P<0.05 or P<0.01).
CONCLUSION
LGS could reduce reactive oxygen species and inflammatory cytokine production by inhibiting p38MAPK/NF-κ B signaling pathway, thus reducing apoptosis and attenuating ARDS.
Drugs, Chinese Herbal/pharmacology*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Animals
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Humans
;
Male
;
Network Pharmacology
;
Apoptosis/drug effects*
;
Mice
5.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
6.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
7.Expert consensus on peri-implant keratinized mucosa augmentation at second-stage surgery.
Shiwen ZHANG ; Rui SHENG ; Zhen FAN ; Fang WANG ; Ping DI ; Junyu SHI ; Duohong ZOU ; Dehua LI ; Yufeng ZHANG ; Zhuofan CHEN ; Guoli YANG ; Wei GENG ; Lin WANG ; Jian ZHANG ; Yuanding HUANG ; Baohong ZHAO ; Chunbo TANG ; Dong WU ; Shulan XU ; Cheng YANG ; Yongbin MOU ; Jiacai HE ; Xingmei YANG ; Zhen TAN ; Xiaoxiao CAI ; Jiang CHEN ; Hongchang LAI ; Zuolin WANG ; Quan YUAN
International Journal of Oral Science 2025;17(1):51-51
Peri-implant keratinized mucosa (PIKM) augmentation refers to surgical procedures aimed at increasing the width of PIKM. Consensus reports emphasize the necessity of maintaining a minimum width of PIKM to ensure long-term peri-implant health. Currently, several surgical techniques have been validated for their effectiveness in increasing PIKM. However, the selection and application of PIKM augmentation methods may present challenges for dental practitioners due to heterogeneity in surgical techniques, variations in clinical scenarios, and anatomical differences. Therefore, clear guidelines and considerations for PIKM augmentation are needed. This expert consensus focuses on the commonly employed surgical techniques for PIKM augmentation and the factors influencing their selection at second-stage surgery. It aims to establish a standardized framework for assessing, planning, and executing PIKM augmentation procedures, with the goal of offering evidence-based guidance to enhance the predictability and success of PIKM augmentation.
Humans
;
Consensus
;
Dental Implants
;
Mouth Mucosa/surgery*
;
Keratins
8.Role of Gold Nanorods Functionalized by Nucleic Acid Nanostructures Carrying Doxorubicin in Synergistic Anti-Cancer Therapy.
Hao WU ; Huang Shui MA ; Xing Han WU ; Qiang SUN ; Lin FENG ; Rui Fang JIANG ; Yan Hong LI ; Quan SHI
Biomedical and Environmental Sciences 2025;38(4):403-415
OBJECTIVE:
Cancer remains a significant global health challenge, necessitating the development of effective treatment approaches. Developing synergistic therapy can provide a highly promising strategy for anti-cancer treatment through combining the benefits of various mechanisms.
METHODS:
In this study, we developed a synergistic strategy for chemo-photothermal therapy by constructing nanocomposites using gold nanorods (GNRs) and tetrahedral framework nucleic acids (tFNA) loaded with the anti-tumor drug doxorubicin (DOX).
RESULTS:
Our in vitro studies have systematically clarified the anti-cancer behaviors of tFNA-DOX@GNR nanocomposites, characterized by their enhanced cellular uptake and proficient lysosomal escape capabilities. It was found that the key role of tFNA-DOX@GNR nanocomposites in tumor ablation is primarily due to their capacity to induce cytotoxicity in tumor cells via a photothermal effect, which generates instantaneous high temperatures. This mechanism introduces various responses in tumor cells, facilitated by the thermal effect and the integrated chemotherapeutic action of DOX. These reactions include the induction of endoplasmic reticulum stress, characterized by elevated reactive oxygen species levels, the promotion of apoptotic cell death, and the suppression of tumor cell proliferation.
CONCLUSION
This work exhibits the potential of synergistic therapy utilizing nanocomposites for cancer treatment and offers a promising avenue for future therapeutic strategies.
Doxorubicin/chemistry*
;
Gold/chemistry*
;
Nanotubes/chemistry*
;
Humans
;
Nanocomposites/chemistry*
;
Cell Line, Tumor
;
Nucleic Acids/chemistry*
;
Antibiotics, Antineoplastic/pharmacology*
;
Antineoplastic Agents/administration & dosage*
9.Liuwei Dihuang Pills-elicited inhibition of MMP-2/MMP-9 via RAGE on tight junction protein of Aβ1-40-injured bEnd.3 cells
Rui DING ; Yong YUAN ; Ya-Quan JIA ; Ai-She GAO ; Zhen-Qiang ZHANG ; Jun-Ying SONG
Chinese Traditional Patent Medicine 2024;46(2):424-430
AIM To investigate the protective effects and the mechanism of the Liuwei Dihuang Pills on mouse brain microvascular endothelial(bEnd.3)cells damaged by β-Amyloid protein1-40(Aβ1-40).METHODS CCK8 method was used to detect the effects of Aβ1-40 and medicated serum of Liuwei Dihuang Pills(MSLDP)on cell activity,and to screen the appropriate concentration.bEnd.3 cells of the control group,the Aβ1-40 group,the MSLDP+Aβ1-40 group and the MSLDP group had their low density lipoprotein-associated protein 1(LRP1),receptor for advanced glycation end products(RAGE),matrix metalloproteinase-2(MMP-2),MMP-9,scaffold protein zonule protein-1(ZO-1)detected by Western blot.bEnd.3 cells assigned into the control group,the Aβ1-40 group,the FPS-ZM1(RAGE inhibitor)+Aβ1-40 group and the FPS-ZM1+Aβ1-40+MSLDP group had their expressions of RAGE,MMP-9,MMP-2 and ZO-1 detected by Western blot as well.RESULTS The cell activity of bEnd.3,was dose-dependently decreased by Aβ1-40(P<0.01),but was protected by MSLDP(P<0.05,P<0.01).And 10 μmol/L Aβ1-40 and 10%MSLDP were selected for subsequent experiments.Compared with the control group,the Aβ1-40 group displayed increased protein expressions of RAGE,MMP-2 and MMP-9(P<0.01),decreased protein expressions of LRP1,ZO-1 and BDNF(P<0.05,P<0.01),and decreased fluorescence intensities of LRP1 and ZO-1(P<0.01).Compared with the Aβ1-40 group,the MSLDP group shared decreased expressions of RAGE,MMP-2,MMP-9 proteins and RAGE fluorescence intensity(P<0.05,P<0.01),and increased expressions of LRP1,ZO-1 and BDNF proteins,and the fluorescence intensity of LRP1 and ZO-1(P<0.05,P<0.01);the Aβ1-40+FPS-ZM1 group displayed decreased protein expressions of MMP-2,MMP9 and RAGE(P<0.05,P<0.01),and increased ZO-1 protein expression(P<0.05);and the Aβ1-40+FPS-ZM1+ MSLDP group displayed an even more decreased protein expressions of MMP-2,MMP9 and RAGE(P<0.01),increased ZO-1 protein expression(P<0.01)due to the the combination use of FPS-ZM1 and MSLDP.CONCLUSION Liuwei Dihuang Pills can protect the tight junction of bEnd.3 injured by Aβ1-40 and neurovascular units from Alzheimer's disease by alleviating the dysfunction of the blood-brain barrier via RAGE-mediated MMP-2/MMP-9 pathway inhibition.
10.Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Quan GAO ; Lin LI ; Qi-Man ZHANG ; Qin-Song SHENG ; Ji-Liang ZHANG ; Li-Jun JIN ; Rui-Yan SHANG
Chinese journal of integrative medicine 2024;30(1):25-33
OBJECTIVE:
To determine whether monotropein has an anticancer effect and explore its potential mechanisms against colorectal cancer (CRC) through network pharmacology and molecular docking combined with experimental verification.
METHODS:
Network pharmacology and molecular docking were used to predict potential targets of monotropein against CRC. Cell counting kit assay, plate monoclonal assay and microscopic observation were used to investigate the antiproliferative effects of monotropein on CRC cells HCT116, HT29 and LoVo. Flow cytometry and scratch assay were used to analyze apoptosis and cell cycle, as well as cell migration, respectively in HCT116, HT29, and LoVo cells. Western blotting was used to detect the expression of proteins related to apoptosis, cell cycle, and cell migration, and the expression of proteins key to the Akt pathway.
RESULTS:
The Gene Ontology and Reactome enrichment analyses indicated that the anticancer potential of monotropein against CRC might be involved in multiple cancer-related signaling pathways. Among these pathways, RAC-beta serine/threonine-protein kinase (Akt1, Akt2), cyclin-dependent kinase 6 (CDK6), matrix metalloproteinase-9 (MMP9), epidermal growth factor receptor (EGFR), cell division control protein 42 homolog (CDC42) were shown as the potential anticancer targets of monotropein against CRC. Molecular docking suggested that monotropein may interact with the 6 targets (Akt1, Akt2, CDK6, MMP9, EGFR, CDC42). Subsequently, cell activity of HCT116, HT29 and LoVo cell lines were significantly suppressed by monotropein (P<0.05). Furthermore, our research revealed that monotropein induced cell apoptosis by inhibiting Bcl-2 and increasing Bax, induced G1-S cycle arrest in colorectal cancer by decreasing the expressions of CyclinD1, CDK4 and CDK6, inhibited cell migration by suppressing the expressions of CDC42 and MMP9 (P<0.05), and might play an anticancer role through Akt signaling pathway.
CONCLUSION
Monotropein exerts its antitumor effects primarily by arresting the cell cycle, causing cell apoptosis, and inhibiting cell migration. This indicates a high potential for developing novel medication for treating CRC.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cell Proliferation
;
Matrix Metalloproteinase 9
;
Molecular Docking Simulation
;
Cell Cycle
;
ErbB Receptors
;
Apoptosis
;
Colorectal Neoplasms/pathology*
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail