1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Advances in the treatment of meibomian gland dysfunction
International Eye Science 2025;25(4):600-605
Meibomian gland dysfunction(MGD)is a chronic, diffuse disorder of the meibomian glands characterized by obstruction of the terminal ducts of the meibomian glands and/or qualitative and/or quantitative abnormalities in glandular secretion. It can lead to tear film changes, symptoms of recurrent eye irritation and/or foreign body sensation, and in severe cases, vision loss, which greatly affects the quality of life and daily work of patients. Although, there are various traditional protocols for the clinical treatment of MGD, which are classified as artificial tears, hot compresses on the eyelids, blepharoplasty massage, and eyelid cleansing, etc., the limitations of traditional treatment protocols that require repetitive manipulation, the tendency for ocular discomfort to recur in some patients after treatment, and the possibility of symptom exacerbation in a few patients have greatly decreased patient compliance, coupled with the fact that there is no unified guideline standard for treatment protocols regarding MGD both at home and abroad at this point in time. Therefore, the disease faces severe challenges in clinical treatment. In recent years, with the deepening of the understanding of the pathogenesis of MGD and research, certain breakthroughs have been made in the field of MGD treatment, and emerging therapeutic approaches have emerged and gradually gained attention and importance. The purpose of this review is to summarize the current progress of emerging MGD treatment and provide reference for the clinical treatment of MGD.
4.Clinical application value of intracavitary PRP infusion combined with IVF-FET in patients with chronic endometritis
Xiaotong ZHANG ; Xiaoyuan HAO ; Rui FANG ; Shuyao HU ; Linkun MA ; Yaqi ZHAO ; Wei HAN
Chinese Journal of Blood Transfusion 2025;38(3):382-387
[Objective] To evaluate the clinical application value of intrauterine perfusion with platelet-rich plasma (PRP) combined with in vitro fertilization-frozen-thawed embryo transfer (IVF-FET) in patients with chronic endometritis (CE). [Methods] A randomized controlled trial (RCT) was conducted, enrolling 60 CE patients undergoing artificial cycle frozen embryo transfer at our hospital from January 2022 to January 2024. Participants were randomly divided into three groups: Group A (routine frozen embryo transfer, n=20), Group B (routine frozen embryo transfer + one PRP intrauterine perfusion, n=20), and Group C (routine frozen embryo transfer + two PRP intrauterine perfusions, n=20). Endometrial thickness during the transformation and transplantation phases, uterine artery pulsatility index (PI), resistance index (RI), systolic peak velocity/end-diastolic velocity (S/D) ratio during transplantation, serum levels of IL-2, IL-4, IL-6, IL-10, and TNF-α during transplantation, as well as biochemical pregnancy rate, clinical pregnancy rate, live birth rate, and early miscarriage rate were compared across groups. [Results] No significant differences in endometrial thickness were observed among the three groups during the transformation phase (P>0.05). During the transplantation phase, endometrial thickness in Groups C and B was significantly higher than in Group A[9.54 (8.96-10.22) and 8.90 (8.34-9.72) vs 8.37 (7.89-8.75) mm, P<0.05], with Group C showing greater thickness than Group B (Z=3.733, P<0.05). Endometrial thickness in Groups C and B during transplantation was significantly increased compared to their respective transformation phases (Z=2.191, 2.462; P<0.05). Groups C and B exhibited lower PI, RI, and S/D values than Group A[PI:1.87 (1.77-1.97), 1.94 (1.88-2.15) vs 2.43 (2.35-2.49); RI:0.75 (0.73-0.77), 0.78 (0.75-0.81) vs 0.84 (0.83-0.86); S/D:2.61 (2.33-3.42), 3.01 (2.20-3.93) vs 3.72 (3.06-4.49); P<0.05]. Group C demonstrated lower PI and RI than Group B (P<0.05). IL-2 levels in Groups C and B were higher than in Group A[3.88 (2.71-5.01), 3.59 (2.73-4.38) vs 3.16 (2.11-3.25) ng/L, P<0.05], while IL-4, IL-6, IL-10, and TNF-α levels were significantly lower (IL-4: Z=1.428, 2.421; IL-6: Z=1.754, 2.435; IL-10: Z=1.754, 2.854; TNF-α: Z=1.961, 1.765; P<0.05). Group C had lower IL-6 levels than Group B (Z=3.976, P<0.05). Biochemical pregnancy rate, clinical pregnancy rate, and live birth rate in Group C were significantly higher than in Group A (75% vs 40%, 70% vs 35%, 60% vs 20%, P<0.05). No significant differences in early miscarriage rates were observed among the groups (χ2=3.750, P>0.05). [Conclusion] Intrauterine autologous PRP perfusion in CE patients enhances pregnancy and live birth rates, improves pregnancy outcomes post-FET, and demonstrates superior efficacy in endometrial repair and receptivity with two PRP perfusions compared to a single perfusion. This provides a safe and effective therapeutic option for optimizing outcomes in CE patients with prior implantation failure.
5.Pathogenesis and Syndrome Differentiation Treatment of Heart Failure Based on "Spleen-mitochondria" and Theory of "Dampness, Turbidity, Phlegm, and Fluid-related Diseases"
Rui ZHANG ; Fuyun JIA ; Jingshun YAN ; Xuan LIU ; Yadong WANG ; Yinan MA ; Yan LIU ; Qiang XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):265-274
Guided by Academician Zhang Boli's theory of "dampness, turbidity, phlegm, and fluid-related diseases",this paper elaborated on the pathogenesis and syndrome differentiation treatment of heart failure from the perspective of the "spleen-mitochondria". It analyzed the essential similarities between "spleen-mitochondria" and "dampness, turbidity, phlegm, and fluid-related diseases", as well as their close association with the onset of heart failure. Furthermore,it explored the connection between spleen function and mitochondrial function in traditional Chinese medicine (TCM),positing that the spleen's role in transportation and transformation is analogous to mitochondrial material metabolism and energy conversion,with spleen deficiency closely related to mitochondrial dysfunction. It thus concluded that mitochondrial material metabolism and energy conversion represent the microscopic essence of the spleen's role in transportation and transformation,and mitochondrial dysfunction is a contributing factor to pathological products like dampness and turbid phlegm,which are closely associated with the occurrence of heart failure. The four elements of dampness,turbidity,phlegm,and fluid are a series of related symptoms resulting from abnormal fluid transportation and transformation,serving as both factors in the onset of heart failure and the core pathological basis for its deterioration. Therefore,during the treatment of heart failure,it is essential to regulate mitochondrial function. Early intervention should focus on eliminating dampness and turbidity to improve mitochondrial function and restore normal energy metabolism. In the middle and late stages,emphasis should be placed on resolving phlegm,promoting blood circulation,warming Yang,and reducing water retention to alleviate mitochondrial damage and improve cardiac function. Supporting Qi and strengthening the spleen should be a continuous approach,and treatment should be adjusted to enhance mitochondrial function and stabilize the condition,thereby improving prognosis. This paper discussed the role of the spleen and mitochondria in the pathogenesis of heart failure,examined the evolution of heart failure mechanisms from the perspective of dampness, turbidity, phlegm, and fluid-related diseases,and proposed a phased treatment strategy. It enriched the theory of dampness, turbidity, phlegm, and fluid-related diseases and offered new strategies for heart failure treatment. However,in practical application,TCM strategies for treating heart failure need to be integrated with modern medical approaches to provide a more solid scientific foundation for treatment.
6.Analysis of peripheral blood genetic material damage in children with vascular malformations after interventional procedures
Yuelong SHI ; Ying PANG ; Zhanchun GUO ; Ya MA ; Yingmin CHEN ; Xiaoshan WANG ; Rui CHEN
Chinese Journal of Radiological Health 2025;34(2):149-154
Objective To observe changes in genetic material in the peripheral blood of pediatric patients with vascular malformations after interventional procedures. Methods A total of 108 children with vascular malformations who underwent interventional procedures at Shandong University Affiliated Children’s Hospital between February 2021 and January 2024 were selected as the research subjects. Clinical data and peripheral venous blood samples before and after the interventional procedures were collected from the children. Two biological indicators, γ-H2AX and peripheral blood lymphocyte chromosomal aberration (CA), were used to determine the levels of genetic material damage in children with vascular malformations before and after interventional procedures. Results The median age of the children was 7 years and the median body weight was 27 kg. The median dose-area product (DAP) was 24.20 Gy·cm2 and the median DAP/kg was 1.04 Gy·cm2/kg. The incidence rates of both γ-H2AX foci and CA in children with vascular malformations significantly increased after the interventional procedures (Z = 5.924, P < 0.001; Z = 8.515, P < 0.001). The incidence of postoperative CA in 7 children were significantly higher than that in others, approaching or exceeding 4%. The incidence rates of postoperative γ-H2AX foci and CA in children with DAP/kg ≥ 1 Gy·cm2/kg were significantly higher than those in children with DAP/kg < 1 Gy·cm2/kg (U = 7.586, P = 0.031; U = 6.835, P = 0.009). No significant differences were observed in the incidence rates of postoperative γ-H2AX foci and CA among subgroups based on age, body weight, or surgical site. A positive correlation was observed between the difference in the incidence rates of γ-H2AX foci before and after the procedure and DAP/kg (R = 0.493, P = 0.027). Conclusion Ionizing radiation exposure during interventional procedures can increase peripheral blood genetic material damage levels in children with vascular malformations, and the damage levels show a correlation with the radiation dose, with some children being abnormally sensitive. Further research is needed to explore the influencing factors for genetic material damage in children with vascular malformations after interventional procedures, which is of great significance for reducing long-term cancer risks and achieving personalized treatment strategies.
7.Effects of alirocumab combined with atorvastatin on clinical efficacy and safety in patients with acute coronary syndrome after PCI
Cuijun HAO ; Rui WANG ; Yiping MA ; Xueping ZHANG ; Yanan LIU ; Shaoqiang QIN
China Pharmacy 2025;36(10):1216-1220
OBJECTIVE To investigate the effects of alirocumab combined with atorvastatin on clinical efficacy and safety of patients with acute coronary syndrome (ACS) who underwent percutaneous coronary intervention (PCI). METHODS A total of 207 patients with ACS who underwent PCI in our hospital from January 2021 to December 2023 were randomly divided into alirocumab group, ezetimibe group and control group, with 69 cases in each group. All patients received routine thrombosis prevention and antihypertensive treatment after PCI. On this basis, patients in the control group were treated with atorvastatin (20 mg/time, once a day); patients in the ezetimibe group were treated with ezetimibe (10 mg/time, once a day) + atorvastatin (20 mg/time, once a day); patients in the alirocumab group were treated with alirocumab (75 mg/time, once every 2 weeks) + atorvastatin (20 mg/time, once a day). All patients in the three groups were treated for 8 weeks and followed up for another 6 months after treatment. The levels of cardiac function and lipid metabolism indices before and after treatment, as well as the occurrence of major adverse cardiovascular event (MACE) and other adverse drug reaction (ADR) during the follow-up period were compared among the three groups. RESULTS After treatment for 8 weeks, the levels of cardiac function and lipid metabolism indices in the three groups were significantly improved compared with those before treatment (P<0.05). Compared with the control group and ezetimibe group, the left ventricular ejection fraction in the alirocumab group was significantly increased, and the left ventricular end-diastolic diameter (LVEDD) was significantly shortened (P<0.05). Compared with control group, LVEDD of ezetimibe group was significantly shortened (P<0.05), the levels of total cholesterol, triglyceride and low-density lipoprotein cholesterol in the alirocumab group and ezetimibe group were significantly decreased (P<0.05). During the follow-up period, there was no significant difference in the total incidence of MACE and the total incidence of other ADR such as headache and abdominal pain among the three groups (P>0.05). CONCLUSIONS Alirocumab combined with atorvastatin can significantly improve cardiac function and regulate lipid metabolism indices in patients with ACS after PCI without increasing the risk of MACE or other ADR.
8.Identification and validation of characterized gene NFE2L2 for ferroptosis in ischemic stroke
Mi WANG ; Shujie MA ; Yang LIU ; Rui QI
Chinese Journal of Tissue Engineering Research 2025;29(7):1466-1474
BACKGROUND:Ferroptosis is closely associated with the pathogenesis of ischemic stroke,and targeting ferroptosis is a promising regimen for the treatment of ischemic stroke,but the specific regulatory targets are unclear. OBJECTIVE:To screen ferroptosis-related characterized genes in ischemic stroke by bioinformatics and machine learning methods and validate them by cellular experiments to investigate the role of ferroptosis in ischemic stroke. METHODS:Eligible ischemic stroke-related datasets and ferroptosis expression datasets were selected based on GEO database and FerrDb database,and ferroptosis-related differential genes were screened by t-test.GO functional enrichment analysis with KEGG signaling pathway enrichment analysis was performed for ferroptosis-related differential genes.Characterized genes for ferroptosis in ischemic stroke were screened by PPI network analysis and machine learning.The reliability and biological functions of the characterized genes were explored using ROC analysis and GSEA analysis,followed by cell experiment.HT22 cells were divided into control and ischemic stroke groups.No intervention was made in the control group,and 0.1 mM H2O2 was added to the ischemic stroke group for 24 hours to simulate cellular oxidative stress injury and ferroptosis.The ferroptosis and the expression of characterized genes were verified by real-time fluorescence quantitative polymerase chain reaction(RT-PCR)and western blot assay. RESULTS AND CONCLUSION:(1)Forty-five ferroptosis-associated differential genes were obtained,and GO and KEGG enrichment analyses revealed that the differential genes were closely associated with oxidative stress,autophagy,ferroptosis,adipocytokine signaling pathway,and mitochondrial metabolism.(2)A total of one ferroptosis characterized gene,nuclear factor erythroid 2-related factor 2(NFE2L2),was identified by the MCODE plugin and cytoHubba plugin in the PPI network with the LASSO algorithm and SVM-RFE algorithm in machine learning.(3)Receiver operating characteristic curve analysis of NFE2L2 revealed that the diagnostic prediction models constructed in the training and validation sets had good accuracy and specificity.GSEA analysis of NFE2L2 revealed that the characterized gene was involved in the regulation of ischemic stroke pathogenesis through immunity,inflammatory response,amino acid metabolism,and neurofactor regulation.(4)RT-PCR and western blot analyses showed that the acyl coenzyme A synthetase long chain family,member 4(ACSL4)mRNA and protein expression levels were significantly higher in the ischemic stroke group compared with the control group(P<0.05),and the glutathione peroxidase 4(GPX4)mRNA and protein expression levels were significantly lower in the ischemic stroke group(P<0.05).Compared with the control group,the mRNA and protein expression levels of the characterized gene NFE2L2 were significantly higher in the ischemic stroke group(P<0.05).(5)It suggests that ischemic stroke is closely related to ferroptosis,and targeting the characterized gene NFE2L2 may provide certain ideas and directions for the study and treatment of ischemic stroke.
9.Hearing loss prevalence and burden of disease in China: Findings from provincial-level analysis.
Yu WANG ; Yang XIE ; Minghao WANG ; Mengdan ZHAO ; Rui GONG ; Ying XIN ; Jia KE ; Ke ZHANG ; Shaoxing ZHANG ; Chen DU ; Qingchuan DUAN ; Fang WANG ; Tao PAN ; Furong MA ; Xiangyang HU
Chinese Medical Journal 2025;138(1):41-48
BACKGROUND:
Without timely and effective rehabilitation, hearing loss may profoundly affect human life quality. China has a large population of hearing-impaired individuals, which imposes a heavy health burden on society. Moreover, this population is projected to increase rapidly owing to China's aging society.
METHODS:
We used data from a population-representative epidemiological investigation of hearing loss and ear diseases in four Chinese provinces. We estimated the national prevalence using multiple linear regression of the age-group proportions and prevalence in 31 provinces with clustering analysis. We used years lived with disability (YLDs) to analyze the disease burden and forecasted the prevalence of hearing loss by 2060 in China.
RESULTS:
An estimated 115 million people had moderate-to-complete hearing loss in 2015 across the 31 provinces of China (8.4% of 1.37 billion people). Of these, 85.7% were older than age 50 years (99 million people) and 2.4% were younger than 20 years old (2.8 million people). Of all YLDs attributable to hearing loss, 68.9% were attributable to moderate-to-complete cases. By 2060, a projected 242 million people in China will have moderate-to-complete hearing loss, a 110.0% increase from 2015.
CONCLUSIONS
The hearing loss prevalence in China is high. Population aging and socioeconomic factors substantially affect the prevalence and severity of hearing loss and the disease burden. The prevalence and severity of hearing loss are unevenly distributed across different provinces. Future public health policies should take these trends and regional variations into account.
Humans
;
China/epidemiology*
;
Hearing Loss/epidemiology*
;
Prevalence
;
Middle Aged
;
Male
;
Female
;
Adult
;
Aged
;
Adolescent
;
Young Adult
;
Child
;
Child, Preschool
;
Infant
;
Aged, 80 and over
;
Cost of Illness
10.The Oncogenic Role of TNFRSF12A in Colorectal Cancer and Pan-Cancer Bioinformatics Analysis
Chuyue WANG ; Yingying ZHAO ; You CHEN ; Ying SHI ; Zhiying YANG ; Weili WU ; Rui MA ; Bo WANG ; Yifeng SUN ; Ping YUAN
Cancer Research and Treatment 2025;57(1):212-228
Purpose:
Cancer has become a significant major public health concern, making the discovery of new cancer markers or therapeutic targets exceptionally important. Elevated expression of tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) expression has been observed in certain types of cancer. This project aims to investigate the function of TNFRSF12A in tumors and the underlying mechanisms.
Materials and Methods:
Various websites were utilized for conducting the bioinformatics analysis. Tumor cell lines with stable knockdown or overexpression of TNFRSF12A were established for cell phenotyping experiments and subcutaneous tumorigenesis in BALB/c mice. RNA-seq was employed to investigate the mechanism of TNFRSF12A.
Results:
TNFRSF12A was upregulated in the majority of cancers and associated with a poor prognosis. Knockdown TNFRSF12A hindered the colorectal cancer progression, while overexpression facilitated malignancy both in vitro and in vivo. TNFRSF12A overexpression led to increased nuclear factor кB (NF-κB) signaling and significant upregulation of baculoviral IAP repeat containing 3 (BIRC3), a transcription target of the NF-κB member RELA, and it was experimentally confirmed to be a critical downstream factor of TNFRSF12A. Therefore, we speculated the existence of a TNFRSF12A/RELA/BIRC3 regulatory axis in colorectal cancer.
Conclusion
TNFRSF12A is upregulated in various cancer types and associated with a poor prognosis. In colorectal cancer, elevated TNFRSF12A expression promotes tumor growth, potentially through the TNFRSF12A/RELA/BIRC3 regulatory axis.

Result Analysis
Print
Save
E-mail