1.Research progress on chemical constituents, pharmacological effects of Rubi Fructus and predictive analysis of its quality markers.
Bao-Song LIU ; Er-Wei YU ; Ying-Ying SUN ; Yao-Yu SONG ; Ke-Han JIANG ; Ya-Gang SONG ; Ming-San MIAO ; Meng-Fan PENG
China Journal of Chinese Materia Medica 2025;50(4):922-933
Rubi Fructus has a long history of medicinal and edible use in China. It contains chemical components such as terpenes, flavonoids, phenolic acids, fatty acids, and alkaloids, and possesses various pharmacological activities, including antioxidant, anti-inflammatory, hypoglycemic, anti-tumor, anti-osteoporosis, and liver-protective effects. Rubi Fructus is widely applied in medical, health, and food fields. The quality of Rubi Fructus can directly affect the safety and effectiveness of clinical medication. Therefore, this article reviews the research progress on the chemical constituents and pharmacological effects of Rubi Fructus. Based on the concept of traditional Chinese medicine(TCM) quality markers(Q-markers), the article explores the screening and determination of Q-markers for Rubi Fructus from various aspects, including plant kinship, traditional efficacy, medicinal properties, measurability of chemical composition, different processing methods, producing areas, harvesting periods, and planting conditions. The components ellagic acid, kaempferol, quercetin, kaempferol-3-O-rutinoside, rutin, astragalin, tiliroside, and hyperoside are preliminarily proposed as Q-markers for Rubi Fructus, providing a reference for the quality control of Rubi Fructus.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Rubus/chemistry*
;
Fruit/chemistry*
;
Quality Control
;
Animals
2.Protein tyrosine phosphatase 1B inhibitory activities of ursane-type triterpenes from Chinese raspberry, fruits of Rubus chingii.
Xiang-Yu ZHANG ; Wei LI ; Jian WANG ; Ning LI ; Mao-Sheng CHENG ; Kazuo KOIKE
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):15-21
Protein tyrosine phosphatase 1B (PTP1B) has led to an intense interest in developing its inhibitors as anti-diabetes, anti-obesity and anti-cancer agents. The fruits of Rubus chingii (Chinese raspberry) were used as a kind of dietary traditional Chinese medicine. The methanolic extract of R. chingii fruits exhibited significant PTP1B inhibitory activity. Further bioactivity-guided fractionation resulted in the isolation of three PTP1B inhibitory ursane-type triterpenes: ursolic acid (1), 2-oxopomolic acid (2), and 2α, 19α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Kinetics analyses revealed that 1 was a non-competitive PTP1B inhibitor, and 2 and 3 were mixed type PTP1B inhibitors. Compounds 1-3 and structurally related triterpenes (4-8) were further analyzed the structure-activity relationship, and were evaluated the inhibitory selectivity against four homologous protein tyrosine phosphatases (TCPTP, VHR, SHP-1 and SHP-2). Molecular docking simulations were also carried out, and the result indicated that 1, 3-acetoxy-urs-12-ene-28-oic acid (5), and pomolic acid-3β-acetate (6) bound at the allosteric site including α3, α6, and α7 helix of PTP1B.
Enzyme Inhibitors
;
chemistry
;
metabolism
;
Fruit
;
chemistry
;
Humans
;
Kinetics
;
Methanol
;
chemistry
;
Molecular Docking Simulation
;
Molecular Structure
;
Plant Extracts
;
chemistry
;
Protein Binding
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
metabolism
;
Protein Tyrosine Phosphatases
;
antagonists & inhibitors
;
Rubus
;
chemistry
;
Structure-Activity Relationship
;
Triterpenes
;
chemistry
;
metabolism
3.Total Saponins of Rubus Parvifolius L. Exhibited Anti-Leukemia Effect in vivo through STAT3 and eIF4E Signaling Pathways.
Xiao-Feng XU ; Ru-Bin CHENG ; Xue-Jin ZHANG ; Rui-Lan GAO
Chinese journal of integrative medicine 2018;24(12):920-924
OBJECTIVE:
To investigate the anti-leukemia effect of total saponins of Rubus parvifolius L. (TSRP) on K562 cell xenografts in nude mice and the mechanisms of action.
METHODS:
The K562 cell xenografts in nude mice were established, and then randomly divided into 5 groups, the control group, the cytosine arabinoside group(Ara-c) and 3 TSRP groups (20, 40 and 100 mg/kg). The tumor volume and mass of each group of nude mice were measured and the anti-tumor rates of TSRP were calculated subsequently. The apoptosis status of tumor cells was detected by hematoxylin-eosin (HE) and terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining analysis. Finally, the activities of apoptosis related signaling of signal transducer and activator of transcription 3 (STAT3), eukaryotic initiation factor 4E (eIF4E) and B-cell lymphoma-2 (bcl-2) were determined with immunohistochemistry tests.
RESULTS:
Subcutaneous injection of K562 cells induced tumor formation in nude mice, and the TSRP treated group showed a signifificant inhibitory effect on tumor formation. The nude mice treated with TSRP showed a signifificant decrease in tumor growth rate and tumor weight in comparison to the control group (all P<0.05). The HE staining and TUNEL assay showed that TSRP induced cell death by apoptosis. The immunohistochemical assay showed down-regulation of the bcl-2 gene in the TSRP treated cells. The phosphorylation levels of eIF4E and STAT3 were decreased obviously after the treatment of TSRP.
CONCLUSION
TSRP had an excellent tumor-suppressing effect on K562 cells in the nude mice xenograft model, suggesting that TSPR can be developed as a promising anti-chronic myeloide leukemia drug.
Animals
;
Apoptosis
;
drug effects
;
Eukaryotic Initiation Factor-4E
;
physiology
;
Humans
;
K562 Cells
;
Leukemia
;
drug therapy
;
pathology
;
Male
;
Mice
;
Rubus
;
chemistry
;
STAT3 Transcription Factor
;
physiology
;
Saponins
;
pharmacology
;
Signal Transduction
;
drug effects
;
Xenograft Model Antitumor Assays
4.Triterpenoids from the roots of Rubus parvifolius.
Xu ZHANG ; Zhi-Xiang ZHU ; Juan WANG ; Wan-Qing YANG ; Cong SU ; Jun LI ; Yuan ZHANG ; Jiao ZHENG ; She-Po SHI ; Peng-Fei TU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):377-381
Two new oleanane-type triterpenoids, parvifolactone A (1) and rubuside P (2), together with 11 known triterpenoids, fupenzic acid (3), 18,19-seco,2α,3α-dihydroxyl-19-oxo-urs-11,13(18)-dien-28-oic acid (4), euscaphic acid (5), maslinic acid (6), 1β- hydroxyeuscaphic acid (7), 2α,3α,19α,23-tetrahydroxyolean-12-en-28-oic acid (8), 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic acid (9), glucosyl pinfaensate (10), rubuside J (11), 2α,3α,19α,23-tetrahydroxyurs-12-en-24,28-dioic acid (12), and 2α,3β,19α- trihydroxyurs-12-en-23,28-dioic acid (13), were isolated from the roots of Rubus parvifolius.
Molecular Structure
;
Plant Extracts
;
chemistry
;
isolation & purification
;
Plant Roots
;
chemistry
;
Rubus
;
chemistry
;
Terpenes
;
chemistry
;
isolation & purification

Result Analysis
Print
Save
E-mail