1.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
2.Research progress on natural small molecule compound inhibitors of NLRP3 inflammasome.
Tian-Yuan ZHANG ; Xi-Yu CHEN ; Xin-Yu DUAN ; Qian-Ru ZHAO ; Lin MA ; Yi-Qi YAN ; Yu WANG ; Tao LIU ; Shao-Xia WANG
China Journal of Chinese Materia Medica 2025;50(3):644-657
In recent years, there has been a growing interest in the research on NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome inhibitors in the treatment of inflammatory diseases. The NLRP3 inflammasome is integral to the innate immune response, and its abnormal activation can lead to the release of pro-inflammatory cytokine, consequently facilitating the progression of various pathological conditions. Therefore, investigating the pharmacological inhibition pathway of the NLRP3 inflammasome represents a promising strategy for the treatment of inflammation-related diseases. Currently, the Food and Drug Administration(FDA) has not approved drugs targeting the NLRP3 inflammasome for clinical use due to concerns regarding liver toxicity and gastrointestinal side effects associated with chemical small molecule inhibitors in clinical trials. Natural small molecule compounds such as polyphenols, flavonoids, and alkaloids are ubiquitously found in animals, plants, and other natural substances exhibiting pharmacological activities. Their abundant sources, intricate and diverse structures, high biocompatibility, minimal adverse reactions, and superior biochemical potency in comparison to synthetic compounds have attracted the attention of extensive scholars. Currently, certain natural small molecule compounds have been demonstrated to impede the activation of the NLRP3 inflammasome via various action mechanisms, so they are viewed as the innovative, feasible, and minimally toxic therapeutic agents for inhibiting NLRP3 inflammasome activation in the treatment of both acute and chronic inflammatory diseases. Hence, this study systematically examined the effects and potential mechanisms of natural small molecule compounds derived from traditional Chinese medicine on the activation of NLRP3 inflammasomes at their initiation, assembly, and activation stages. The objection is to furnish theoretical support and practical guidance for the effective clinical application of these natural small molecule inhibitors.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Humans
;
Animals
;
Disease Models, Animal
;
Biological Products/therapeutic use*
;
Drug Discovery
;
Medicine, Chinese Traditional/methods*
3.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
4.Saltwater stir-fried Plantaginis Semen alleviates renal fibrosis by regulating epithelial-mesenchymal transition in renal tubular cells.
Xin-Lei SHEN ; Qing-Ru ZHU ; Wen-Kai YU ; Li ZHOU ; Qi-Yuan SHAN ; Yi-Hang ZHANG ; Yi-Ni BAO ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(5):1195-1208
This study aimed to investigate the effect of saltwater stir-fried Plantaginis Semen(SPS) on renal fibrosis in rats and decipher the underlying mechanism. Thirty-six Sprague-Dawley rats were randomly assigned into control, model, losartan potassium, and low-, medium-, and high-dose(15, 30, and 60 g·kg~(-1), respectively) SPS groups. Rats in other groups except the control group were subjected to unilateral ureteral obstruction(UUO) to induce renal fibrosis, and the modeling and gavage lasted for 14 days. After 14 consecutive days of treatment, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in rats of each group were determined by an automatic biochemical analyzer. Hematoxylin-eosin(HE) and Masson staining were used to evaluate pathological changes in the renal tissue. Western blot and immunofluorescence assay were conducted to determine the protein levels of fibronectin(FN), collagen Ⅰ, vimentin, and α-smooth muscle actin(α-SMA) in the renal tissue. The mRNA levels of epithelial-mesenchymal transition(EMT)-associated transcription factors including twist family bHLH transcription factor 1(TWIST1), snail family transcriptional repressor 1(SNAI1), and zinc finger E-box binding homeobox 1(ZEB1), as well as inflammatory cytokines such as interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), were determined by RT-qPCR. Human renal proximal tubular epithelial(HK2) cells exposed to transforming growth factor-β(TGF-β) for the modeling of renal fibrosis were used to investigate the inhibitory effect of SPS on EMT. Network pharmacology and Western blot were employed to explore the molecular mechanism of SPS in alleviating renal fibrosis. The results showed that SPS significantly reduced Scr and BUN levels and alleviated renal injury and collagen deposition in UUO rats. Moreover, SPS notably down-regulated the protein levels of FN, collagen Ⅰ, vimentin, and α-SMA as well as the mRNA levels of SNAI1, ZEB1, TWIST1, IL-1β, IL-6, and TNF-α in the kidneys of UUO rats and TGF-β-treated HK-2 cells. In addition, compared with Plantaginis Semen without stir-frying with saltwater, SPS showed increased content of specific compounds, which were mainly enriched in the mitogen-activated protein kinase(MAPK) signaling pathway. SPS significantly inhibited the phosphorylation of extracellular signal-regulated kinase(ERK) and p38 MAPK in the kidneys of UUO rats and TGF-β-treated HK2 cells. In conclusion, SPS can alleviate renal fibrosis by attenuating EMT through inhibition of the MAPK signaling pathway.
Animals
;
Epithelial-Mesenchymal Transition/drug effects*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Fibrosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Kidney Diseases/pathology*
;
Kidney Tubules/pathology*
;
Humans
5.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
6.Cost-Effectiveness of Denosumab for Treating Bone Metastases from Solid Tumors: A Systematic Review (2017-2023).
Cong WANG ; Jin-Yu LIU ; Min WAN ; Qi YUAN ; Yu ZHANG ; Guang-Yi YU ; Ru-Xu YOU
Chinese Medical Sciences Journal 2025;40(3):219-231
OBJECTIVES:
This systematic review examines recent pharmacoeconomic literature on denosumab' cost-effectiveness for bone metastasis treatment, providing evidence-based insights to guide healthcare policy decisions.
METHODS:
A comprehensive literature search was performed across Cochrane, PubMed, EMBASE (Ovid), CNKI, and Wanfang databases to identify original articles published between 2017 and 2023. Key words consisted of bone metastases, denosumab, and cost-effectiveness in the search strategy. The methodological quality of the included studies was assessed utilizing the revised Consolidated Health Economic Evaluation Reporting Standards (CHEERS 2022). Data was extracted regarding methodological characteristics and cost-effectiveness analyses.
RESULTS:
A total of 111 studies were retrieved, of which 6 met the inclusion criteria. All included studies were based on clinical trials and published literature data and exhibited high methodological quality. Up to 83% (5 out of 6) of comparisons demonstrated that denosumab was more cost-effective or dominant compared to zoledronic acid. The adjusted incremental cost-effectiveness ratios varied substantially by tumor type, ranging from CZK 436,339.09 to USD 136,234 per skeletal-related event avoided and from CZK 61,580.95 to USD 118,392.11 per quality-adjusted life year gained.
CONCLUSIONS
The majority of the included studies support denosumab as a more cost-effective treatment option for bone metastases in solid tumors compared to zoledronic acid. The application of CHEER (2022) enhances the reliability of pharmacoeconomic evaluations.
Denosumab/therapeutic use*
;
Humans
;
Bone Neoplasms/economics*
;
Cost-Benefit Analysis
7.Chemical constituents from the twigs of Aglaia perviridis and their biological activities
Yi QIAN ; Ru-Qi LI ; Jun-Li WU ; Xin LI ; Feng ZHANG
Chinese Traditional Patent Medicine 2024;46(3):843-850
AIM To study the chemical constituents from the twigs of Aglaia perviridis Hiern and their total antioxidant and neuroprotective activities.METHODS The 95%ethanol extract from the twigs of A.perviridis were isolated and purified by silica gel,ODS and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The antioxidant and neuroprotective activities were evaluated by T-AOC kit and MTT assay,respectively.RESULTS Twenty-one compounds were isolated and identified as 3-epicotillol(1),syringic acid(2),palmitic acid(3),di-N-pentyl phthalate(4),ethyl-4-hydroxyphenylacetate(5),7-hydroxy-6-methoxycoumarin(6),1-octanol(7),p-hydroxyphenylacetic acid(8),(+)-syringaresinol-4-O-β-D-glucopyranoside(9),(+)-episyring-4-O-β-D-glucopyranoside(10),methy-4-hydroxyphenylacetate(11),koaburaside(12),byzantionoside B(13),quercetin 3-O-α-L-rhamnopyranoside(14),(2R,3R)-(+)-glucodistylin(15),(2S,3S)-(-)-glucodistylin(16),(+)-lyoniresinol-3α-O-β-D-glucopyranoside(17),(+)-isolariciresinol-9'-O-β-D-glucopyranosidede(18),(-)-lyoniresinol-3α-O-β-D-glucopyranoside(19),phlorizin(20),β-sitosterol(21).The total antioxidant capacity of compounds2,9-10,14-20 was 10.300-38.367 U/(mmol·L-1).The neuroprotective effects of compounds 2,10 and 17 were concentration-dependent,and the optimal concentrations of compounds 9 and 15 were 50,100 μmol/L,respectively.CONCLUSION Compounds 1-20 are isolated from this plant for the first time.Compounds 2,9-10,14-20 have strong total antioxidant activities.Compounds 2,9-10,15,17 have neuroprotective activities.
8.Ciliary development regulated by Adgrv1 gene through Hedgehog pathway in retinitis pigmentosa
Lei ZHANG ; Guoyun ZHANG ; Qianfeng WANG ; Ru WANG ; Qi FANG ; Wei QIANG ; Shuwei BAI ; Haiyan WANG
International Eye Science 2024;24(11):1701-1707
AIM: To analyze the mechanism of Usher syndrome(USH)caused by Adgrv1 gene variation through the Hedgehog(Hh)signaling pathway.METHODS: Based on Adgrv1 gene variant mice(Adgrv1-/-), taking wild type(WT)C57BL/6 mice as controls, the expression of Adgrv1 gene and the structure of retina and cell cilia were analyzed by qRT-PCR, HE, transmission electron microscopy, and immunofluorescence. Additionally, the changes of key factors in the Hh signaling pathway caused by Adgrv1 gene variation were observed.RESULTS: The Adgrv1 gene was expressed in both the retina and primary cultured lung fibroblasts of Adgrv1-/- mice, but the expression levels were significantly decreased. The Adgrv1 gene variation can cause dissolution of the outer disc membrane of the retinal photoreceptors and significantly shorten the cilia length in primary lung fibroblasts. In the Hh signaling pathway, the expression of Ptch1 and Gli genes of Adgrv1-/- was significantly reduced, while the expression of PKA genes was increased.CONCLUSION:The Adgrv1 gene variation leads to shortened cell cilia and dissolution of the outer disc membrane of the retinal photoreceptors, resulting in retinitis pigmentosa, which is related to decreased expression of PTCH1 and GLI1 proteins in the Hh pathway.
9.Research progress on carrier-free and carrier-supported supramolecular nanosystems of traditional Chinese medicine anti-tumor star molecules
Zi-ye ZANG ; Yao-zhi ZHANG ; Yi-hang ZHAO ; Xin-ru TAN ; Ji-chang WEI ; An-qi XU ; Hong-fei DUAN ; Hong-yan ZHANG ; Peng-long WANG ; Xue-mei HUANG ; Hai-min LEI
Acta Pharmaceutica Sinica 2024;59(4):908-917
Anti-tumor traditional Chinese medicine has a long history of clinic application, in which the star molecules have always been the hotspot of modern drug research, but they are limited by the solubility, stability, targeting, bioactivity or toxicity of the monomer components of traditional Chinese medicine anti-tumor star molecules and other pharmacokinetic problems, which hinders the traditional Chinese medicine anti-tumor star molecules for further clinical translation and application. Currently, the nanosystems prepared by supramolecular technologies such as molecular self-assembly and nanomaterial encapsulation have broader application prospects in improving the anti-tumor effect of active components of traditional Chinese medicine, which has attracted extensive attention from scholars at home and abroad. In this paper, we systematically review the research progress in preparation of supramolecular nano-systems from anti-tumor star molecule of traditional Chinese medicine, and summarize the two major categories and ten small classes of carrier-free and carrier-based supramolecular nanosystems and their research cases, and the future development direction is put forward. The purpose of this paper is to provide reference for the research and clinical transformation of using supramolecular technology to improve the clinical application of anti-tumor star molecule of traditional Chinese medicine.
10.Research status of sodium-glucose co-transporter 2 inhibitors in the treatment of type 2 diabetes mellitus with heart failure with preserved ejection fraction
Ming-Yan LIU ; Bing-Qi ZHANG ; Hu-Hu LI ; Nai-Ru YUN ; Si-Miao FAN ; Rong-Rong YANG ; Rui-Ying GUO ; Yong-Na DAI
The Chinese Journal of Clinical Pharmacology 2024;40(13):1977-1981
Sodium-glucose co-transporter protein 2 inhibitor(SGLT2i)has steadily demonstrated benefits in the treatment of type 2 diabetes complicated with cardiovascular diseases based on evidence-based medicine,but its precise mechanism is yet unknown.We identified type 2 diabetes patients with HFpEF by searching PubMed,Web of Science,China knowledge network(CNKI),and other databases.We then summarized the pathological mechanism of HFpEF caused by type 2 diabetes.At the same time,to link to evidence-based medical,we explored the future of SGLT2i in clinical application.

Result Analysis
Print
Save
E-mail