1.RNA G-quadruplex (rG4) exacerbates cellular senescence by mediating ribosome pausing.
Haoxian ZHOU ; Shu WU ; Bin LI ; Rongjinlei ZHANG ; Ying ZOU ; Mibu CAO ; Anhua XU ; Kewei ZHENG ; Qinghua ZHOU ; Jia WANG ; Jinping ZHENG ; Jianhua YANG ; Yuanlong GE ; Zhanyi LIN ; Zhenyu JU
Protein & Cell 2025;16(11):953-967
Loss of protein homeostasis is a hallmark of cellular senescence, and ribosome pausing plays a crucial role in the collapse of proteostasis. However, our understanding of ribosome pausing in senescent cells remains limited. In this study, we utilized ribosome profiling and G-quadruplex RNA immunoprecipitation sequencing techniques to explore the impact of RNA G-quadruplex (rG4) on the translation efficiency in senescent cells. Our results revealed a reduction in the translation efficiency of rG4-rich genes in senescent cells and demonstrated that rG4 structures within coding sequence can impede translation both in vivo and in vitro. Moreover, we observed a significant increase in the abundance of rG4 structures in senescent cells, and the stabilization of the rG4 structures further exacerbated cellular senescence. Mechanistically, the RNA helicase DHX9 functions as a key regulator of rG4 abundance, and its reduced expression in senescent cells contributing to increased ribosome pausing. Additionally, we also observed an increased abundance of rG4, an imbalance in protein homeostasis, and reduced DHX9 expression in aged mice. In summary, our findings reveal a novel biological role for rG4 and DHX9 in the regulation of translation and proteostasis, which may have implications for delaying cellular senescence and the aging process.
G-Quadruplexes
;
Cellular Senescence
;
Ribosomes/genetics*
;
Humans
;
Animals
;
Mice
;
DEAD-box RNA Helicases/genetics*
;
Protein Biosynthesis
;
RNA/chemistry*
;
Neoplasm Proteins
2.Knockdown of SMARCA4 leads to ferroptosis of HT1080 cells through inhibition of cholesterol synthesis
Rongjinlei ZHANG ; Zeyu QIU ; Yuanlong GE ; Zhenyu JU ; Shu WU
Chinese Journal of Pathophysiology 2024;40(3):420-430
AIM:To investigate the role and molecular mechanisms of SMARCA4(SWI/SNF-related,matrix-associated,actin-dependent regulator of chromatin,subfamily A,member 4)in ferroptosis.METHODS:(1)Human fi-brosarcoma HT1080 cells were treated with dimethyl sulfoxide(DMSO)and different concentrations(31.25,62.5 and 125 nmol/L)of Ras-selective lethal small molecule 3(RSL3;ferroptosis inducer).Each treatment had 3 replicate wells of cells.The protein levels of SMARCA4 were detected by Western blot.(2)Two small interfering RNAs(siSMARCA4-1 and siSMARCA4-2)were constructed according to the SMARCA4 gene sequence.After SMARCA4 knockdown,each treat-ment had 3 replicate wells of cells,and the protein levels of SMARCA4 were determined by Western blot.Effects of DMSO,necrostatin 2 racemate(Nec-1s;necroptosis inhibitor),Z-VAD(OMe)-FMK(Z-VAD,pan-caspase inhibitor/apoptosis inhibitor)and ferrostatin-1(Fer-1,ferroptosis inhibitor)on cell viability were assessed using high-content analy-sis.The levels of ferroptosis indicators,including prostaglandin-endoperoxide synthase 2(PTGS2)transcription,lipid peroxidation,reactive oxygen species(ROS),labile iron pool(LIP)and glutathione,were determined by RT-qPCR and flow cytometry.The mRNA expression levels of pivotal iron metabolism genes,ferroptosis-related ROS regulatory genes,and cholesterol synthesis-related genes were measured using RT-qPCR.Impact of cholesterol on the cell viability were as-sessed using high-content analysis.(3)Common differential gene analysis and gene ontology(GO)enrichment analysis were performed on published online data.RESULTS:(1)Treatment with RSL3 significantly reduced the protein level of SMARCA4(P<0.05).(2)Knockdown of SMARCA4 resulted in ferroptosis.(3)Knockdown of SMARCA4 did not induce ferroptosis by modulating the LIP and the transcription levels of ROS-related genes.(4)Knockdown of SMARCA4 affected the pathways associated with the cell membrane,lipid raft,and cholesterol synthesis.(5)Addition of cholesterol to cell culture medium rescued the ferroptosis induced by SMARCA4 knockdown(P<0.01).CONCLUSION:Treatment with RSL3 reduces the protein level of SMARCA4 in human fibrosarcoma HT1080 cells,and inhibition of cholesterol synthesis by SMARCA4 knockdown leads to the ferroptosis of HT1080 cells.

Result Analysis
Print
Save
E-mail