1.A promising novel local anesthetic for effective anesthesia in oral inflammatory conditions through reducing mitochondria-related apoptosis.
Haofan WANG ; Yihang HAO ; Wenrui GAI ; Shilong HU ; Wencheng LIU ; Bo MA ; Rongjia SHI ; Yongzhen TAN ; Ting KANG ; Ao HAI ; Yi ZHAO ; Yaling TANG ; Ling YE ; Jin LIU ; Xinhua LIANG ; Bowen KE
Acta Pharmaceutica Sinica B 2025;15(11):5854-5866
Local anesthetics (LAs), such as articaine (AT), exhibit limited efficacy in inflammatory environments, which constitutes a significant limitation in their clinical application within oral medicine. In our prior research, we developed AT-17, which demonstrated effective properties in chronic inflammatory conditions and appears to function as a novel oral LA that could address this challenge. In the present study, we further elucidated the beneficial effects of AT-17 in acute inflammation, particularly in oral acute inflammation, where mitochondrial-related apoptosis played a crucial role. Our findings indicated that AT-17 effectively inhibited lipopolysaccharide (LPS)-induced nerve cell apoptosis by ameliorating mitochondrial dysfunction in vitro. This process involved the inhibition of mitochondrial reactive oxygen species (mtROS) production and the subsequent activation of the NRF2 pathway. Most notably, improvements in mitochondria-related apoptosis were key contributors to AT-17's inhibition of voltage-gated sodium channels. Additionally, AT-17 was shown to reduce mtROS production in nerve cells through the Na+/NCLX/ETC signaling axis. In conclusion, we have developed a novel local anesthetic that exhibits pronounced anesthetic functionality under inflammatory conditions by enhancing mitochondria-related apoptosis. This advancement holds considerable promise for future drug development and deepening our understanding of the underlying mechanisms of action.
2. Expert consensus on prevention and cardiopulmonary resuscitation for cardiac arrest in COVID-19
Wei SONG ; Yanhong OUYANG ; Yuanshui LIU ; Heping XU ; Feng ZHAN ; Wenteng CHEN ; Jun ZHANG ; Shengyang YI ; Jie WEI ; Xiangdong JIAN ; Deren WANG ; Xianjin DU ; Ying CHEN ; Yingqi ZHANG ; Shuming XIANYU ; Qiong NING ; Xiang LI ; Xiaotong HAN ; Yan CAO ; Tao YU ; Wenwei CAI ; Sheng'Ang ZHOU ; Yu CAO ; Xiaobei CHEN ; Shunjiang XU ; Zong'An LIANG ; Duohu WU ; Fen AI ; Zhong WANG ; Qingyi MENG ; Yuhong MI ; Sisen ZHANG ; Rongjia YANG ; Shouchun YAN ; Wenbin HAN ; Yong LIN ; Chuanyun QIAN ; Wenwu ZHANG ; Yan XIONG ; Jun LV ; Baochi LIU ; Xiaojun HE ; Xuelian SUN ; Yufang CAO ; Tian'En ZHOU
Asian Pacific Journal of Tropical Medicine 2021;14(6):241-253
Background: Cardiopulmonary resuscitation (CPR) strategies in COVID-19 patients differ from those in patients suffering from cardiogenic cardiac arrest. During CPR, both healthcare and non-healthcare workers who provide resuscitation are at risk of infection. The Working Group for Expert Consensus on Prevention and Cardiopulmonary Resuscitation for Cardiac Arrest in COVID-19 has developed this Chinese Expert Consensus to guide clinical practice of CPR in COVID-19 patients. Main recommendations: 1) A medical team should be assigned to evaluate severe and critical COVID-19 for early monitoring of cardiac-arrest warning signs. 2) Psychological counseling and treatment are highly recommended, since sympathetic and vagal abnormalities induced by psychological stress from the COVID-19 pandemic can induce cardiac arrest. 3) Healthcare workers should wear personal protective equipment (PPE). 4) Mouth-to-mouth ventilation should be avoided on patients suspected of having or diagnosed with COVID-19. 5) Hands-only chest compression and mechanical chest compression are recommended. 6) Tracheal-intubation procedures should be optimized and tracheal-intubation strategies should be implemented early. 7) CPR should be provided for 20-30 min. 8) Various factors should be taken into consideration such as the interests of patients and family members, ethics, transmission risks, and laws and regulations governing infectious disease control. Changes in management: The following changes or modifications to CPR strategy in COVID-19 patients are proposed: 1) Healthcare workers should wear PPE. 2) Hands-only chest compression and mechanical chest compression can be implemented to reduce or avoid the spread of viruses by aerosols. 3) Both the benefits to patients and the risk of infection should be considered. 4) Hhealthcare workers should be fully aware of and trained in CPR strategies and procedures specifically for patients with COVID-19.
3.Effects of isorhamnetin on human liver microsomes CYPs and rat primary hepatocytes
Rongjia LIANG ; Junxiu CHEN ; Dexian ZHI ; Yaowen FAN ; Wenli LIU ; Xin HE
Drug Evaluation Research 2017;40(5):627-632
Objective To study the inhibitory effects ofisorhamnetin on six kinds of CYPs of liver in vitro,and the toxic effect on rat hepatocytes Methods This report uses warm incubation of human liver microsomes in vitro to investigate the inhibition of isorhamnetin on 6 kinds of CYPs (CYP2C19,CYP2D6,CYP3A4,CYP2E1,CYP1A2 and CYP2C9),and using HPLC-MS/MS to detect product of metabolism as well as analysing of the pathways of metabolic.At the same time,using rat primary hepatocytes which has low CYPs activity in vitro to explore whether the use of isorhamnetin will cause effects on the ALT,AST and LDH of hepatocytes.Results Isorhamnetin has inhibition effects on CYP2E1 and CYP1A2,the inhibition rate were 59.48% and 39.91%,respectively.Methylated metabolite is produced after incubating of isorhamnetin and HLMs.The isorhmnetin becomes high polarity and water solubility metabolite 3,3',4',5,7-hydroxyflavone.Isorhamnetin of 30,100 and 300 μmol/L cause a significant rise of ALT and LDH in primary cultured rat hepatocytes cultured (P < 0.01).isorharnnetin of 100 μmol/L cause a rise of AST in primary cultured rat hepatocytes cultured (P < 0.05) and 300 μmol/L cause a significant rise (P < 0.01).It was a dose-dependent manner.Conclusion Isorhamnetin in vitro mainly metabolized by HLMs,and at the same time have a certain inhibitory effect on CYP2E1 and CYP1A2,which may cause the drugs which are metabolized by CYP2E1 and CYP1A2 in vivo accumulation that lead to a series of drug interactions.The results also indicate that heavy use of isorhamnetin cause some adverse effects on hepatocytes,and it was a dose-dependent manner.Individuals need to pay attention to the dose ofisorhamnetin and the potential drug interactions.

Result Analysis
Print
Save
E-mail