1.Hepatitis B virus inhibits TLR4,NLRP3 and downstream factors of M1 macrophages to promote immune escape
Zili ZHANG ; Jiamin LIU ; Rong ZENG ; Ling YU ; Qing YE ; Xu XU ; Wanlong PAN
Chinese Journal of Immunology 2024;40(9):1808-1814
Objective:To explore the mechanism of hepatitis B virus(HBV)inhibiting M1 macrophages to promote immune escape,and to provide targets and strategies for antiviral therapy.Methods:The human monocyte cell line THP-1 was induced into M1 macrophages with PMA+LPS+IFN-γ.Cell morphological changes and the expressions of CD68,CD86,HLA-DR and functional molecules IL-1β,IL-6,TNF-α in M1 macrophages were detected by flow cytometry and RT-qPCR to identify M1 macrophages.HBV stable replication cell line HepG2.2.15 were co-cultured with M1 macrophages,and the expression of HBV-DNA was detected by qP-CR.The expression of CD68,CD86 and HLA-DR were detected by flow cytometry.The expressions of functional molecules TLR4,NLRP3,Caspase-1,pro-caspase-1,caspase-1 p20,IL-1β and IL-18 in M1 macrophages were determined by RT-qPCR and Western blot.Apoptosis rate was detected by flow cytometry,and the expression of apoptosis related protein cleaved-caspase-3 was determined by Western blot.Results:THP-1 was successfully induced to differentiate into M1 macrophages.M1 macrophages inhibited HBV repli-cation(P<0.05).HBV inhibited the expressions of CD68,CD86 and HLA-DR in M1 macrophages(P<0.01).HBV inhibited the ex-pressions of TLR4,NLRP3,Caspase-1,caspase-1 p20,IL-1β and IL-18 in M1 macrophages(P<0.01).HBV induced M1 macro-phage apoptosis(P<0.05).Conclusion:HBV inhibits M1 macrophages and their functional molecules TLR4,NLRP3 and down-stream factors,reduces the synthesis and secretion of inflammatory factors,induces apoptosis,and then promotes immune escape,re-sulting in the persistence and replication of HBV in the body.
2.Detection of Neoehrlichia mikurensis in rodents on the basis of the groEL gene in Yunnan commensal rodent plague foci
Rong WEI ; Zi-Wei LI ; Yun-Yan LUO ; Na WANG ; Shu-Qing LIU ; Jin-Chun LI ; Jiang-Li LU ; Jia-Xiang YIN
Chinese Journal of Zoonoses 2024;40(7):689-695
The purpose of this study was to understand the prevalence of Neoehrlichia mikurensis in rodents in Yunnan commensal rodent plague foci.Lianghe Country,Mangshi City,and Mile City in Yunnan Province were chosen as sampling sites,where rodents were captured with dead-traps.The N.mikurensis groEL gene in rodent spleen samples was detected with nested PCR,and the positive products were sequenced with Sanger bidirectional assays.The infection rate of N.mikurensis a-mong plague foci,habitats,species,and sexes was compared with Chi-square tests or Fisher's exact probability method.Of 656 rodent spleen samples,12 N.mikurensis positive samples were detected in R.tanezumi,R.sladeni,N.confucianus,and B.bowersi.The positivity rate was 1.83%.No significant difference in the N.mikurensis positivity rate was observed a-mong plague foci,habitats,species,and sexes(P>0.05).Genetic evolution analysis of the groEL gene indicated that the se-quence similarity of nucleic acid sequences in 12 positive samples was 99.5%-100%,and the nucleic acid sequences of N.mikurensis were in the same branch,belonging to cluster Ⅳ.Thus,four species of rodents were found to have low frequency infection with N.mikurensis in Yunnan commensal rodent plague foci.
3.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
4.Establishment of primary breast cancer cell line as new model for drug screening and basic research
Xian HAO ; Jianjun HUANG ; Wenxiu YANG ; Jinting LIU ; Junhong ZHANG ; Yubei LUO ; Qing LI ; Dahong WANG ; Yuwei GAO ; Fuyun TAN ; Li BO ; Yu ZHENG ; Rong WANG ; Jianglong FENG ; Jing LI ; Chunhua ZHAO ; Xiaowei DOU
China Oncology 2024;34(6):561-570
Background and purpose:In 2016 the National Cancer Institute(NCI)decided stopping to use NCI-60 cell lines for drug screening,suggesting that tumor cell lines were losing their value as a tool for drug discovery and basic research.The reason for NCI-60 cells'retirement'was that the preclinical studies based on traditional cellular and animal models did not obtain the corresponding expected efficacy in clinical trials.Since the major cancer behaviors,such as proliferation and metastasis,are fundamentally altered with long-term culture,the tumor cell lines are not representative of the characteristics of cancer in patients.Currently,scientists hope to create a new cancer model that are derived from fresh patient samples and tagged with details about their clinical past.Our purpose was to create patient-derived breast cancer primary cell lines as new cancer model for drug screening and basic research.Methods:Breast cancer tissues were collected in the Department of Breast Surgery,Affiliated Hospital of Guizhou Medical University.The collection of tumor tissue samples was approved by the Ethics Committee of the Affiliated Hospital of Guizhou Medical University(approval number:2022 ethics No.313),and the collection and use of tumor tissues complied with the Declaration of Helsinki.The primary breast cancer cell lines were isolated from the patient's breast cancer tissues and cultured in BCMI medium.After the cells proliferated,the media were replaced with DEME medium.Cell line STR genotyping was done to determine cell-specific genetic markers and identification.Clone formation assay and transplantation assay were done to analyze the ability of breast cancer primary cell lines to form tumors.Results:We created 6 primary breast cancer cell lines.The 6 primary breast cancer cell lines from the patients were tagged with the definitively clinicopathological features,clinical diagnosis,therapeutic regimens,clinical effectiveness and prognostic outcomes.The STR genotyping assays identified the genetic markers and determined the identities of the 6 primary breast cancer cell lines.Clone formation assays and transplantation assay showed that the proliferative capacities of the patient-derived primary breast cancer cell lines were significantly greater compared with the conventional breast cancer cell lines.Conclusion:We created a panel of 6 patient-derived primary breast cancer cell lines as new cancer model for drug screening and basic research in breast cancer.
5.The effect of different inhaled drugs on the treatment of patients with frequent cough in chronic obstructive pulmonary disease
Xueshan LI ; Qing SONG ; Wei CHENG ; Cong LIU ; Ling LIN ; Yuqin ZENG ; Rong YI ; Xin LI ; Ping CHEN
Journal of Chinese Physician 2024;26(6):805-810
Objective:To compare the therapeutic effects of different inhaled medications on patients with frequent cough in chronic obstructive pulmonary disease (COPD), including changes in symptoms and acute exacerbation.Methods:This study was based on the RealDTC study, and the study subjects were stable COPD patients from the Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University from December 2016 to March 2023. The demographic characteristics, smoking status, history of biofuel exposure, history of acute exacerbation in the past year, lung function, COPD Assessment Test (CAT) score, modified British Medical Research Council Respiratory Difficulty Questionnaire (mMRC) score, and inhalation medication regimen of the patients were collected. Patients with frequent cough are defined as having a cough score of ≥2 in the first item of the CAT score. According to the type of inhaled medication, patients with frequent cough are divided into l long-acting muscarine anticholinergic (LAMA), long-acting β2 agonists (LABA)+ LAMA, inhaled corticosteroids (ICS)+ LABA, and ICS+ LABA+ LAMA groups. At the 6th month follow-up, CAT scores were collected and symptom control was evaluated, including minimum clinical improvement (MCID) (defined as a decrease of ≥2 points from baseline in CAT scores at the 6th month) and improvement in cough symptoms (defined as a decrease of ≥1 point from baseline in cough scores). During a one-year follow-up, the number of acute exacerbations was evaluated. The relationship between different inhaled medications and prognosis in patients with frequent cough in COPD was evaluated using multivariate logistic regression analysis.Results:A total of 653 patients with frequent cough in COPD were included, with a CAT score of (16.4±6.1) and a cough score of 3(2, 3). After 6 months of follow-up, 403 patients (61.7%) achieved MCID, and 394 patients (60.3%) had improved cough symptoms; During a one-year follow-up, 227 patients (34.8%) experienced acute exacerbation. After receiving inhalation medication treatment, the CAT scores and cough scores of four groups of patients with frequent cough, namely LAMA, LABA+ LAMA, ICS+ LABA, and ICS+ LABA+ LAMA, decreased compared to before treatment (all P<0.05). There was a statistically significant difference in the proportion of △CAT score, MCID, and acute exacerbation among the four groups of LAMA, LABA+ LAMA, ICS+ LABA, and ICS+ LABA+ LAMA (all P<0.05), while there was no statistically significant difference in the proportion of △cough score and cough score reduction ≥1 point (all P>0.05). The results of multivariate logistic regression analysis showed that compared with patients treated with LAMA or ICS+ LABA drugs, patients with frequent cough in COPD treated with LABA+ LAMA or ICS+ LABA+ LAMA drugs were more likely to achieve MCID and less likely to experience acute exacerbation (all P<0.05). Conclusions:Compared with LAMA or ICS+ LABA, patients with frequent cough in COPD who receive LABA+ LAMA or ICS+ LABA+ LAMA drug treatment are more likely to improve symptoms and have a lower risk of acute exacerbation.
6.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Hepatitis C virus infection:surveillance report from China Healthcare-as-sociated Infection Surveillance System in 2020
Xi-Mao WEN ; Nan REN ; Fu-Qin LI ; Rong ZHAN ; Xu FANG ; Qing-Lan MENG ; Huai YANG ; Wei-Guang LI ; Ding LIU ; Feng-Ling GUO ; Shu-Ming XIANYU ; Xiao-Quan LAI ; Chong-Jie PANG ; Xun HUANG ; An-Hua WU
Chinese Journal of Infection Control 2024;23(1):1-8
Objective To investigate the infection status and changing trend of hepatitis C virus(HCV)infection in hospitalized patients in medical institutions,and provide reference for formulating HCV infection prevention and control strategies.Methods HCV infection surveillance results from cross-sectional survey data reported to China Healthcare-associated Infection(HAI)Surveillance System in 2020 were summarized and analyzed,HCV positive was serum anti-HCV positive or HCV RNA positive,survey result was compared with the survey results from 2003.Results In 2020,1 071 368 inpatients in 1 573 hospitals were surveyed,738 535 of whom underwent HCV test,4 014 patients were infected with HCV,with a detection rate of 68.93%and a HCV positive rate of 0.54%.The positive rate of HCV in male and female patients were 0.60%and 0.48%,respectively,with a statistically sig-nificant difference(x2=47.18,P<0.001).The HCV positive rate in the 50-<60 age group was the highest(0.76%),followed by the 40-<50 age group(0.71%).Difference among all age groups was statistically signifi-cant(x2=696.74,P<0.001).In 2003,91 113 inpatients were surveyed.35 145 of whom underwent HCV test,resulting in a detection rate of 38.57%;775 patients were infected with HCV,with a positive rate of 2.21%.In 2020,HCV positive rates in hospitals of different scales were 0.46%-0.63%,with the highest in hospital with bed numbers ranging 600-899.Patients'HCV positive rates in hospitals of different scales was statistically signifi-cant(X2=35.34,P<0.001).In 2020,12 provinces/municipalities had over 10 000 patients underwent HCV-rela-ted test,and HCV positive rates ranged 0.19%-0.81%,with the highest rate from Hainan Province.HCV posi-tive rates in different departments were 0.06%-0.82%,with the lowest positive rate in the department of pedia-trics and the highest in the department of internal medicine.In 2003 and 2020,HCV positive rates in the depart-ment of infectious diseases were the highest,being 7.95%and 3.48%,respectively.Followed by departments of orthopedics(7.72%),gastroenterology(3.77%),nephrology(3.57%)and general intensive care unit(ICU,3.10%)in 2003,as well as departments of gastroenterology(1.35%),nephrology(1.18%),endocrinology(0.91%),and general intensive care unit(ICU,0.79%)in 2020.Conclusion Compared with 2003,HCV positive rate decreased significantly in 2020.HCV infected patients were mainly from the department of infectious diseases,followed by departments of gastroenterology,nephrology and general ICU.HCV infection positive rate varies with gender,age,and region.
9.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
10.Treatment of Small Cell Lung Cancer from the Perspective of Wind
Rong HUANG ; Liqun JIA ; Ruitao WANG ; Jianrong SUN ; Qing LIU
Journal of Traditional Chinese Medicine 2024;65(9):949-953
It is believed that wind pathogen is one of the core pathogenic factors of small cell lung cancer (SCLC). The nature and pathogenic characteristics of wind pathogen are closely related to the occurrence and metastasis of SCLC. Mainly manifested as deficiency of both qi and yin, healthy qi deficiency of SCLC makes it susceptible to invasion of external wind. Simultaneously, there are internal wind pathogenesis such as yin deficiency causing wind, blood deficiency causing wind, phlegm, stasis and toxin causing wind, liver yang transforming into wind. The internal and external winds together lead to the disease. Therefore, it is proposed to treat SCLC from wind theory, that is, boosting qi and nourishing yin to extinguish wind with taizishen (Radix Pseudostellariae), wuweizi (Fructus Schisandrae Chinensis) and others; resolving phlegm and moving stasis to dispel wind with wind-dispelling and phlegm-resolving medicinals such as jiangcan (Bombyx Batryticatus), muhudie (Semen Oroxyli), fangfeng (Radix Saposhnikoviae), tianma (Rhizoma Gastrodiae), quanxie (Scorpio) and blood-invigorating and wind-dispelling medi-cinals such as danggui (Radix Angelicae Sinensis), chuanxiong (Rhizoma Chuanxiong) and danshen (Radix et Rhizoma Salviae Miltiorrhizae); attacking toxin and dissipating masses to dispel wind with shuizhi (Hirudo), dilong (Pheretima), fengfang (Nidus Vespae), quanxie, baihuashe (Agkistrodon), jiuxiangchong (Aspongopus) and other drastic medicinals; calming liver and extinguishing wind to prevent brain metastasis of SCLC with Tianma Gouteng Beverage (天麻钩藤饮) modification.

Result Analysis
Print
Save
E-mail