1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
5.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
6.Validation of Ultrasound and Computed Tomography-Based Risk Stratification System and Biopsy Criteria for Cervical Lymph Nodes in Preoperative Patients With Thyroid Cancer
Young Hun JEON ; Ji Ye LEE ; Roh-Eul YOO ; Jung Hyo RHIM ; Kyung Hoon LEE ; Kyu Sung CHOI ; Inpyeong HWANG ; Koung Mi KANG ; Ji-hoon KIM
Korean Journal of Radiology 2023;24(9):912-923
Objective:
This study aimed to validate the risk stratification system (RSS) and biopsy criteria for cervical lymph nodes (LNs) proposed by the Korean Society of Thyroid Radiology (KSThR).
Materials and Methods:
This retrospective study included a consecutive series of preoperative patients with thyroid cancer who underwent LN biopsy, ultrasound (US), and computed tomography (CT) between December 2006 and June 2015. LNs were categorized as probably benign, indeterminate, or suspicious according to the current US- and CT-based RSS and the size thresholds for cervical LN biopsy as suggested by the KSThR. The diagnostic performance and unnecessary biopsy rates were calculated.
Results:
A total of 277 LNs (53.1% metastatic) in 228 patients (mean age ± standard deviation, 47.4 years ± 14) were analyzed. In US, the malignancy risks were significantly different among the three categories (all P < 0.001); however, CTdetected probably benign and indeterminate LNs showed similarly low malignancy risks (P = 0.468). The combined US + CT criteria stratified the malignancy risks among the three categories (all P < 0.001) and reduced the proportion of indeterminate LNs (from 20.6% to 14.4%) and the malignancy risk in the indeterminate LNs (from 31.6% to 12.5%) compared with US alone. In all image-based classifications, nodal size did not affect the malignancy risks (short diameter [SD] ≤ 5 mm LNs vs. SD > 5 mm LNs, P ≥ 0.177). The criteria covering only suspicious LNs showed higher specificity and lower unnecessary biopsy rates than the current criteria, while maintaining sensitivity in all imaging modalities.
Conclusion
Integrative evaluation of US and CT helps in reducing the proportion of indeterminate LNs and the malignancy risk among them. Nodal size did not affect the malignancy risk of LNs, and the addition of indeterminate LNs to biopsy candidates did not have an advantage in detecting LN metastases in all imaging modalities.
7.Risk of thyroid cancer in a lung cancer screening population of the National Lung Screening Trial according to the presence of incidental thyroid nodules detected on low-dose chest CT
Hyobin SEO ; Kwang Nam JIN ; Ji Sang PARK ; Koung Mi KANG ; Eun Kyung LEE ; Ji Ye LEE ; Roh-Eul YOO ; Young Joo PARK ; Ji-hoon KIM
Ultrasonography 2023;42(2):275-285
Purpose:
This study evaluated thyroid cancer risk in a lung cancer screening population according to the presence of an incidental thyroid nodule (ITN) detected on low-dose chest computed tomography (LDCT).
Methods:
Of 47,837 subjects who underwent LDCT, a lung cancer screening population according to the National Lung Screening Trial results was retrospectively enrolled. The prevalence of ITN on LDCT was calculated, and the ultrasonography (US)/fine-needle aspiration (FNA)–based risk of thyroid cancer according to the presence of ITN on LDCT was compared using the Fisher exact or Student t-test as appropriate.
Results:
Of the 2,329 subjects (female:male=44:2,285; mean age, 60.9±4.9 years), the prevalence of ITN on LDCT was 4.8% (111/2,329). The incidence of thyroid cancer was 0.8% (18/2,329, papillary thyroid microcarcinomas [PTMCs]) and was higher in the ITN-positive group than in the ITN-negative group (3.6% [4/111] vs. 0.6% [14/2,218], P=0.009). Among the 2,011 subjects who underwent both LDCT and thyroid US, all risks were higher (P<0.001) in the ITNpositive group than in the ITN-negative group: presence of thyroid nodule on US, 94.1% (95/101) vs. 48.6% (928/1,910); recommendation of FNA according to the American Thyroid Association guideline and Korean Thyroid Imaging Reporting and Data System guideline, 41.2% (42/101) vs. 2.4% (46/1,910) and 39.6% (40/101) vs. 1.9% (37/1,910), respectively.
Conclusion
Despite a higher risk of thyroid cancer in the LDCT ITN-positive group than in the ITN-negative group in a lung cancer screening population, all cancers were PTMCs. A heavy smoking history may not necessitate thorough screening US for thyroid incidentalomas.
8.Glymphatic Magnetic Resonance Imaging: Part I—Methodologies for Evaluation of the Glymphatic System
Hyochul LEE ; Roh-Eul YOO ; Seung Hong CHOI
Investigative Magnetic Resonance Imaging 2023;27(4):196-207
Glymphatic magnetic resonance imaging (MRI) is an advanced technique for visualizing the glymphatic system of the brain. We reviewed recent research findings that utilized glymphatic MRI techniques to elucidate the intricate physiological processes of the glymphatic system. We introduce the significance of assessing the glymphatic system by exploring various MRI methodologies, each possessing unique advantages and limitations.Some of these methodologies involve the use of gadolinium-based contrast agents to map the distribution within the brain, while others do not require the use of contrast agents. These approaches offer distinct insights and constraints, enabling researchers to investigate the glymphatic system using MRI. Eventually, glymphatic MRI methodologies will provide invaluable insights to enhance our understanding of the complex pathophysiology of the brain. These findings are expected to contribute significantly to our knowledge and treatment of brain disorders, particularly neurodegenerative diseases. Glymphatic MRI is a crucial reference for exploring promising research avenues in which MRI techniques can play a pivotal role in comprehending and visualizing the brain’s glymphatic system.
9.Glymphatic Magnetic Resonance Imaging: Part II—Applications in Sleep and Neurodegenerative Diseases
Hyochul LEE ; Roh-Eul YOO ; Seung Hong CHOI
Investigative Magnetic Resonance Imaging 2023;27(4):208-220
The glymphatic system plays a crucial role in brain waste clearance, with glymphatic magnetic resonance imaging (MRI) techniques highlighting its significance in understanding neurodegenerative diseases. This review emphasizes the intricate relationship between sleep, the glymphatic system, and the onset of conditions such as Alzheimer's disease (AD), idiopathic normal pressure hydrocephalus (iNPH), Parkinson's disease (PD), and other neurological diseases. Key findings revealed that sleep disruptions can impair the glymphatic system and potentially accelerate the progression of neurodegenerative diseases. In AD, amyloid β plaque accumulation correlates with glymphatic dysfunction, while in iNPH, impaired glymphatic functionality may result in waste accumulation, such as amyloid-beta accumulation in AD. Research on PD has underscored the potential role of the glymphatic system in α-synuclein clearance. In conclusion, as we delve into the glymphatic system using MRI techniques, we anticipate a richer understanding of neurodegenerative diseases, offering prospects for innovative therapeutic interventions.
10.Added Value of Contrast Leakage Information over the CBV Value of DSC Perfusion MRI to Differentiate between Pseudoprogression and True Progression after Concurrent Chemoradiotherapy in Glioblastoma Patients
Elena PAK ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Jae-Kyung WON ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN
Investigative Magnetic Resonance Imaging 2022;26(1):10-19
Purpose:
To evaluate whether the added value of contrast leakage information from dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) is a better prognostic imaging biomarker than the cerebral blood volume (CBV) value in distinguishing true progression from pseudoprogression in glioblastoma patients.
Materials and Methods:
Forty-nine glioblastoma patients who had undergone MRI after concurrent chemoradiotherapy with temozolomide were enrolled in this retrospective study. Twenty features were extracted from the normalized relative CBV (nCBV) and extraction fraction (EF) map of the contrast-enhancing region in each patient. After univariable analysis, we used multivariable stepwise logistic regression analysis to identify significant predictors for differentiating between pseudoprogression and true progression. Receiver operating characteristic (ROC) analysis was employed to determine the best cutoff values for the nCBV and EF features. Finally, leave-one-out cross-validation was used to validate the best predictor in differentiating between true progression and pseudoprogression.
Results:
Multivariable stepwise logistic regression analysis showed that MGMT (O 6 -methylguanine-DNA methyltransferase) and EF max were independent differentiating variables (P = 0.004 and P = 0.02, respectively). ROC analysis yielded the best cutoff value of 95.75 for the EF max value for differentiating the two groups (sensitivity, 61%; specificity, 84.6%; AUC, 0.681 ± 0.08; 95% CI, 0.524-0.837; P = 0.03). In the leave-one-out cross-validation of the EF max value, the cross-validated values for predicting true progression and pseudoprogression accuracies were 69.4% and 71.4%,respectively.
Conclusion
We demonstrated that contrast leakage information parameter from DSC MRI showed significance in differentiating true progression from pseudoprogression in glioblastoma patients.

Result Analysis
Print
Save
E-mail