1.Structural insights into the binding modes of lanreotide and pasireotide with somatostatin receptor 1.
Zicheng ZENG ; Qiwen LIAO ; Shiyi GAN ; Xinyu LI ; Tiantian XIONG ; Lezhi XU ; Dan LI ; Yunlu JIANG ; Jing CHEN ; Richard YE ; Yang DU ; Thiansze WONG
Acta Pharmaceutica Sinica B 2025;15(5):2468-2479
Somatostatin receptor 1 (SSTR1) is a crucial therapeutic target for various neuroendocrine and oncological disorders. Current SSTR1-targeted treatments, including the first-generation somatostatin analog lanreotide (Lan) and the second-generation analog pasireotide (Pas), show promise but encounter challenges related to selectivity and efficacy. This study presents high-resolution cryo-electron microscopy structures of SSTR1 complexed with Lan or Pas, revealing the distinct mechanisms of ligand-binding and activation. These structures illustrate unique conformational changes in the SSTR1 orthosteric pocket induced by each ligand, which are critical for receptor activation and ligand selectivity. Combined with the biochemical assays and molecular dynamics simulations, our results provide a comparative analysis of binding characteristics within the SSTR family, highlighting subtle differences in SSTR1 activation by Lan and Pas. These insights pave the way for designing next-generation therapies with enhanced efficacy and reduced side effects through improved receptor subtype selectivity.
2.Discovery of Yersinia LcrV as a novel biased agonist of formyl peptide receptor 1 to bi-directionally modulate intracellular kinases in triple-negative breast cancer.
Yunjun GE ; Huiwen GUAN ; Ting LI ; Jie WANG ; Liang YING ; Shuhui GUO ; Jinjian LU ; Richard D YE ; Guosheng WU
Acta Pharmaceutica Sinica B 2025;15(7):3646-3662
G protein-coupled receptors (GPCRs) are significant drug targets, but their potential in cancer therapy remains underexplored. Conventional GPCR agonists or antagonists have shown limited effectiveness in cancer treatment, necessitating new GPCR-targeting strategies for more effective therapies. This study discovers that Yersinia pestis LcrV, a crucial linker protein for plague infection, acts as a biased agonist of a GPCR, the formyl peptide receptor 1 (FPR1). The LcrV protein induces unique conformational changes in FPR1, resulting in G proteins being activated in a distinctive state without subunit dissociation. This leads to a biased signaling profile characterized by cyclic adenosine monophosphate (cAMP) responses and β-arrestin2 recruitment, but not calcium mobilization. In FPR1-expressing triple-negative breast cancer (TNBC) cells, LcrV bi-directionally modulates intracellular signaling pathways, downregulating extracellular signal-regulated kinases (ERK1/2) and Akt pathways while upregulating Jun N-terminal kinase (JNK) and p38 pathways. This dual modulation results in cell cycle arrest and the inhibition of TNBC cell proliferation. In TNBC xenograft mouse models, long-term LcrV treatment inhibits tumor growth more effectively than a conventional FPR1 antagonist. Additionally, LcrV treatment reprograms tumor cells by reducing stemness-associated proteins OCT4 and c-MYC. Our findings highlight the potential of biased GPCR agonists as a novel GPCR-targeting strategy for cancer treatment.
3.Corynoxine B targets at HMGB1/2 to enhance autophagy for α-synuclein clearance in fly and rodent models of Parkinson's disease.
Qi ZHU ; Juxian SONG ; Jia-Yue CHEN ; Zhenwei YUAN ; Liangfeng LIU ; Li-Ming XIE ; Qiwen LIAO ; Richard D YE ; Xiu CHEN ; Yepiao YAN ; Jieqiong TAN ; Chris Soon HENG TAN ; Min LI ; Jia-Hong LU
Acta Pharmaceutica Sinica B 2023;13(6):2701-2714
Parkinson's disease (PD) is the most common neurodegenerative movement disease. It is featured by abnormal alpha-synuclein (α-syn) aggregation in dopaminergic neurons in the substantia nigra. Macroautophagy (autophagy) is an evolutionarily conserved cellular process for degradation of cellular contents, including protein aggregates, to maintain cellular homeostasis. Corynoxine B (Cory B), a natural alkaloid isolated from Uncaria rhynchophylla (Miq.) Jacks., has been reported to promote the clearance of α-syn in cell models by inducing autophagy. However, the molecular mechanism by which Cory B induces autophagy is not known, and the α-syn-lowering activity of Cory B has not been verified in animal models. Here, we report that Cory B enhanced the activity of Beclin 1/VPS34 complex and increased autophagy by promoting the interaction between Beclin 1 and HMGB1/2. Depletion of HMGB1/2 impaired Cory B-induced autophagy. We showed for the first time that, similar to HMGB1, HMGB2 is also required for autophagy and depletion of HMGB2 decreased autophagy levels and phosphatidylinositol 3-kinase III activity both under basal and stimulated conditions. By applying cellular thermal shift assay, surface plasmon resonance, and molecular docking, we confirmed that Cory B directly binds to HMGB1/2 near the C106 site. Furthermore, in vivo studies with a wild-type α-syn transgenic drosophila model of PD and an A53T α-syn transgenic mouse model of PD, Cory B enhanced autophagy, promoted α-syn clearance and improved behavioral abnormalities. Taken together, the results of this study reveal that Cory B enhances phosphatidylinositol 3-kinase III activity/autophagy by binding to HMGB1/2 and that this enhancement is neuroprotective against PD.
4.Pharmacological insights into autophagy modulation in autoimmune diseases.
Ming-Yue WU ; Er-Jin WANG ; Du FENG ; Min LI ; Richard D YE ; Jia-Hong LU
Acta Pharmaceutica Sinica B 2021;11(11):3364-3378
As a cellular bulk degradation and survival mechanism, autophagy is implicated in diverse biological processes. Genome-wide association studies have revealed the link between autophagy gene polymorphisms and susceptibility of autoimmune diseases including systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), indicating that autophagy dysregulation may be involved in the development of autoimmune diseases. A series of autophagy modulators have displayed protective effects on autoimmune disease models, highlighting the emerging role of autophagy modulators in treating autoimmune diseases. This review explores the roles of autophagy in the autoimmune diseases, with emphasis on four major autoimmune diseases [SLE, rheumatoid arthritis (RA), IBD, and experimental autoimmune encephalomyelitis (EAE)]. More importantly, the therapeutic potentials of small molecular autophagy modulators (including autophagy inducers and inhibitors) on autoimmune diseases are comprehensively analyzed.
5.Best practices on immunomodulators and biologic agents for ulcerative colitis and Crohn's disease in Asia
Choon Jin OOI ; Ida HILMI ; Rupa BANERJEE ; Sai Wei CHUAH ; Siew Chien NG ; Shu Chen WEI ; Govind K MAKHARIA ; Pises PISESPONGSA ; Min Hu CHEN ; Zhi Hua RAN ; Byong Duk YE ; Dong Il PARK ; Khoon Lin LING ; David ONG ; Vineet AHUJA ; Khean Lee GOH ; Jose SOLLANO ; Wee Chian LIM ; Wai Keung LEUNG ; Raja Affendi Raja ALI ; Deng Chyang WU ; Evan ONG ; Nazri MUSTAFFA ; Julajak LIMSRIVILAI ; Tadakazu HISAMATSU ; Suk Kyun YANG ; Qin OUYANG ; Richard GEARY ; Janaka H DE SILVA ; Rungsun RERKNIMITR ; Marcellus SIMADIBRATA ; Murdani ABDULLAH ; Rupert WL LEONG ;
Intestinal Research 2019;17(3):285-310
The Asia-Pacific Working Group on inflammatory bowel disease (IBD) was established in Cebu, Philippines, under the auspices of the Asian Pacific Association of Gastroenterology with the goal of improving IBD care in Asia. This consensus is carried out in collaboration with Asian Organization for Crohn's and Colitis. With biologic agents and biosimilars becoming more established, it is necessary to conduct a review on existing literature and establish a consensus on when and how to introduce biologic agents and biosimilars in the conjunction with conventional treatments for ulcerative colitis (UC) and Crohn's disease (CD) in Asia. These statements also address how pharmacogenetics influence the treatments of UC and CD and provide guidance on response monitoring and strategies to restore loss of response. Finally, the review includes statements on how to manage treatment alongside possible hepatitis B and tuberculosis infections, both common in Asia. These statements have been prepared and voted upon by members of IBD workgroup employing the modified Delphi process. These statements do not intend to be all-encompassing and future revisions are likely as new data continue to emerge.
Adalimumab
;
Asia
;
Asian Continental Ancestry Group
;
Biological Factors
;
Biosimilar Pharmaceuticals
;
Colitis
;
Colitis, Ulcerative
;
Consensus
;
Cooperative Behavior
;
Crohn Disease
;
Gastroenterology
;
Hepatitis B
;
Humans
;
Immunologic Factors
;
Inflammatory Bowel Diseases
;
Infliximab
;
Pharmacogenetics
;
Philippines
;
Practice Guidelines as Topic
;
Tuberculosis
;
Ulcer
6.Biphasic modulation of chemerin peptide-induced calcium flux and ERK phosphorylation by amyloid beta peptide
GONG HAO ; ZHANG SHUO ; LIAO DAN ; YE Dequan RICHARD
Chinese Journal of Pharmacology and Toxicology 2017;31(10):1020-1021
OBJECTIVE The chemokine-like receptor 1 (CMKLR1, ChemR23) is a functional receptor for chemerin, the chemerin-derived nonapeptide (C9), and the amyloid β peptide 1-42 (Aβ42). Because these peptides share little sequence homology, studies were conducted to investigate their pharmaco?logical properties and regulation at CMKLR1. METHODS Cells expressing CMKLR1 were incubated with Aβ42 before stimulation with a strong agonist, the C9 peptide. Calcium mobilization, cAMP inhibition and MAP kinase activation were measured. Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C- terminus and a FlAsH binding motif embedded in the first intracellular loop (IL1). RESULTS Binding of both Aβ42 and the C9 peptide induced CMKLR1 internal?ization, but only the Aβ42-induced receptor internalization involved clathrin-coated pits. Likewise, Aβ42 but not C9 stimulated β-arrestin 2 translocation to plasma membranes. A robust Ca2+ flux was observed following C9 stimulation, whereas Aβ42 was ineffective even at micromolar concentrations. Despite its low potency in calcium mobilization assay, Aβ42 was able to alter C9 -induced Ca2+ flux in dose-dependent manner: a potentiation effect at 100 pmol·L-1 of Aβ42 was followed by a suppression at 10 nmol·L-1 and further potentiation at 1 μmol·L-1. This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca2+ flux and cAMP inhibition, suggesting a reciprocal regulatory mechanism. Intramolecular FRET assay confirmed that Aβ42 modulates CMKLR1 rather than its downstream signaling pathways. CONCLUSION These findings suggest Aβ42 as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.
7.Functionally diverse ligands modulate different activation states of the formyl peptide receptor 2, a G protein-coupled receptor
ZHANG SHUO ; GONG HAO ; YE Dequan RICHARD
Chinese Journal of Pharmacology and Toxicology 2017;31(10):981-982
OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2 (FPR2) mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner. METHODS Cells expressing FPR2 were incubated with weak agonists, Aβ42 and Ac2-26, before stimulation with a strong agonist, WKYMVm. Calcium mobilization, cAMP inhibition and MAP kinase activation were measured. Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C- terminus and a FlAsH binding motif embedded in the first or third intracellular loop (IL1 or IL3, respectively). RESULTS Aβ42 did not induce significant Ca2 + mobilization, but positively modulated WKYMVm-induced Ca2 + mobilization and cAMP reduction in a dose-variable manner within a narrow range of ligand concentrations. Treating FPR2-expressing cells with Ac2-26, a peptide with anti-inflam?matory activity, negatively modulated WKYMVm-induced Ca2 + mobilization and cAMP reduction. Intra?molecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3. An opposite conformational change was induced by Ac2-26. The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation, whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation. CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2. These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation.
8.Operational models of allosteric modulation of G protein-coupled receptors
Hao GONG ; Shuo ZHANG ; Richard Dequan YE
Acta Pharmaceutica Sinica 2016;51(12):1829-
Since the Monod-Wyman-Changeux (MWC) model was initially proposed to explain the allosteric interactions between proteins and their ligands 50 years ago, there have been various models and hypotheses such as the induced-fit model on the interaction. These theoretical developments have been used broadly in the study of allosteric modulations of enzymes and receptors. In 1980, Lefkowitz and coworkers proposed a ternary complex model (TCM) for the regulatory mechanism of G protein-coupled receptors (GPCRs) that laid the theoretical foundation in the study of allosteric sites and ligands of GPCRs, the largest family of known receptors. The findings on how ligands interact with receptors to cause a functional response have significantly impacted the drug discovery field and accelerated the identification of allosteric modulators.
9.Advances of radical prostatectomy
China Oncology 2001;0(03):-
Radical prostatectomy is currently the most commonly used therapeutic option for treating localized prostate cancer. The procedure has been greatly improved in terms of techniques over the last 20 years, the associated complications and morbidity have been dramatically reduced. Currently the operation has high profile in terms of safety and is the best choice for the treatment of localized disease without compromising quality of life. This review gives a detailed description of the recent technical advances and modifications of the procedure. Current trends in surgical technique in this field are also presented. The individualized procedure could be performed according to the technical modifications to improve the final results. The progress in the standard laparoscopic and robot-assisted laparoscopic radical prostatectomy is also reviewed.
10.Expression of p27~(kip1) in prostatic intraepithelial neoplasia cells
Dingwei YE ; Hui LI ; Land RICHARD
Chinese Journal of Urology 2001;0(07):-
Objective To investigate the expression of p27 kip1 protein in prostatic intraepithelial neoplasia cells. Methods In 22 human prostatic samples, the expression of p27 kip1 protein in high grade prostatic intraepithelial neoplasia cells was evaluated by using immunohistochemical analysis. Results The expression of p27 kip1 in prostatic intraepithelial neoplasia cells was weaker than in adjacent prostatic epithelial cells in all the 22 prostate samples. Conclusions Decrease of the p27 kip1 expression may play a role in the development of PIN which may be an premalignant lesion.

Result Analysis
Print
Save
E-mail