2.miR-34b-3p Inhibition of eIF4E Causes Post-stroke Depression in Adult Mice.
Xiao KE ; Manfei DENG ; Zhuoze WU ; Hongyan YU ; Dian YU ; Hao LI ; Youming LU ; Kai SHU ; Lei PEI
Neuroscience Bulletin 2023;39(2):194-212
Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.
Animals
;
Mice
;
Depression
;
Eukaryotic Initiation Factor-4E/metabolism*
;
MicroRNAs/metabolism*
;
Neurons/metabolism*
;
Stroke/metabolism*
3.5'-tiRNA-Gln inhibits hepatocellular carcinoma progression by repressing translation through the interaction with eukaryotic initiation factor 4A-I.
Chengdong WU ; Dekai LIU ; Lufei ZHANG ; Jingjie WANG ; Yuan DING ; Zhongquan SUN ; Weilin WANG
Frontiers of Medicine 2023;17(3):476-492
tRNA-derived small RNAs (tsRNAs) are novel non-coding RNAs that are involved in the occurrence and progression of diverse diseases. However, their exact presence and function in hepatocellular carcinoma (HCC) remain unclear. Here, differentially expressed tsRNAs in HCC were profiled. A novel tsRNA, tRNAGln-TTG derived 5'-tiRNA-Gln, is significantly downregulated, and its expression level is correlated with progression in patients. In HCC cells, 5'-tiRNA-Gln overexpression impaired the proliferation, migration, and invasion in vitro and in vivo, while 5'-tiRNA-Gln knockdown yielded opposite results. 5'-tiRNA-Gln exerted its function by binding eukaryotic initiation factor 4A-I (EIF4A1), which unwinds complex RNA secondary structures during translation initiation, causing the partial inhibition of translation. The suppressed downregulated proteins include ARAF, MEK1/2 and STAT3, causing the impaired signaling pathway related to HCC progression. Furthermore, based on the construction of a mutant 5'-tiRNA-Gln, the sequence of forming intramolecular G-quadruplex structure is crucial for 5'-tiRNA-Gln to strongly bind EIF4A1 and repress translation. Clinically, 5'-tiRNA-Gln expression level is negatively correlated with ARAF, MEK1/2, and STAT3 in HCC tissues. Collectively, these findings reveal that 5'-tiRJNA-Gln interacts with EIF4A1 to reduce related mRNA binding through the intramolecular G-quadruplex structure, and this process partially inhibits translation and HCC progression.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Eukaryotic Initiation Factor-4A/genetics*
;
Cell Line
;
RNA, Transfer/metabolism*
;
RNA
;
Cell Proliferation
4.Screening of housekeeping genes in Gelsemium elegans and expression patterns of genes involved in its alkaloid biosynthesis.
Yao ZHANG ; Detian MU ; Yu ZHOU ; Ying LU ; Yisong LIU ; Mengting ZUO ; Zhuang DONG ; Zhaoying LIU ; Qi TANG
Chinese Journal of Biotechnology 2023;39(1):286-303
Gelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.
Genes, Essential
;
Gelsemium/genetics*
;
Peptide Elongation Factor 1/genetics*
;
Transcriptome
;
Gene Expression Profiling/methods*
;
Alkaloids
;
Real-Time Polymerase Chain Reaction/methods*
;
Reference Standards
5.Role of Eukaryotic Translation Elongation Factor 1 Family Members in the Tumorigenesis and Progression of Lung Adenocarcinoma.
Yue WU ; Jiang-Feng LIU ; Wan-Feng LIANG ; Ye-Hong YANG ; Gang HU ; Jun-Tao YANG
Acta Academiae Medicinae Sinicae 2023;45(6):867-885
Objective To investigate the role and mechanism of eukaryotic translation elongation factor 1(EEF1) family members (EEF1D,EEF1A1,and EEF1A2) in lung adenocarcinoma (LUAD) based on public databases.Methods We examined EEF1 member expression levels in human LUAD samples via The Cancer Genome Atlas in the UCSC Xena browser and the Clinical Proteomic Tumor Analysis Consortium.We analyzed the mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 and their correlations with pathological variables via the Mann-Whitney U test.The Kaplan-Meier curves were established to assess the prognostic values of EEF1D,EEF1A1,and EEF1A2.The single-sample gene set enrichment analysis algorithm was employed to explore the relationship between the expression levels of EEF1 members and tumor immune cell infiltration.Spearman and Pearson correlation analyses were performed to examine the relationship between the expression levels of EEF1 members and those of the genes in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.The immunohistochemical assay was employed to determine the expression levels of EEF1D,EEF1A1,and EEF1A2 in the LUAD tissue (n=75) and paracancer tissue (n=75) samples.Results The mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 showed significant differences between tumor and paracancer tissues (all P<0.001).The patients with high protein levels of EEF1A1 showed bad prognosis in terms of overall survival (P=0.039),and those with high protein levels of EEF1A2 showed good prognosis in terms of overall survival (P=0.012).The influence of the mRNA level of EEF1D on prognosis was associated with pathological characteristics.The expression levels of EEF1 members were significantly associated with the infiltration of various immune cells and the expression of key molecules in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.Conclusion EEF1D,EEF1A1,and EEF1A2 are associated with the progression of LUAD,serving as the candidate prognostic markers for LUAD.
Humans
;
Peptide Elongation Factor 1/metabolism*
;
Proteomics
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinogenesis
;
Adenocarcinoma of Lung
;
Lung Neoplasms
;
RNA, Messenger/genetics*
;
Phosphatidylinositol 3-Kinases
;
Prognosis
6.Effect of eIF4B knockout on apoptosis of mouse fetal liver cells.
Guoqing WANG ; Biao CHEN ; Yuhai CHEN ; Qianwen ZHU ; Min PENG ; Guijie GUO ; Jilong CHEN
Chinese Journal of Biotechnology 2022;38(9):3489-3500
Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro, but the in vivo function is poorly understood. In this study, via various experimental techniques such as hematoxylin-eosin (HE) staining, flow cytometry, Western blotting, and immunohistochemistry, we investigated the role of eIF4B in mouse embryo development using an eIF4B knockout (KO) mouse model and explored the mechanism. We found that the livers, but not lungs, brain, stomach, or pancreas, derived from eIF4B KO mouse embryos displayed severe pathological changes characterized by enhanced apoptosis and necrosis. Accordingly, high expression of cleaved-caspase 3, and excessive activation of mTOR signaling as evidenced by increased expression and phosphorylation of p70S6K and enhanced phosphorylation of 4EBP1, were observed in mouse embryonic fibroblasts and fetal livers from eIF4B KO mice. These results uncover a critical role of eIF4B in mouse embryo development and provide important insights into the biological functions of eIF4B in vivo.
Animals
;
Apoptosis/genetics*
;
Caspase 3
;
Eosine Yellowish-(YS)
;
Eukaryotic Initiation Factors/metabolism*
;
Fibroblasts
;
Hematoxylin
;
Liver/metabolism*
;
Mice
;
Ribosomal Protein S6 Kinases, 70-kDa/genetics*
;
TOR Serine-Threonine Kinases
7.Prevalence and risk factors of obesity in children with Diamond-Blackfan anemia.
Mei-Hui YI ; Yang WAN ; Si-Qi CHENG ; Xiao-Wen GONG ; Zi-Xi YIN ; Jun LI ; Yang-Yang GAO ; Chao WU ; Su-Yu ZONG ; Li-Xian CHANG ; Yu-Mei CHEN ; Rong-Xiu ZHENG ; Xiao-Fan ZHU
Chinese Journal of Contemporary Pediatrics 2022;24(10):1143-1148
OBJECTIVES:
To investigate the distribution of body mass index (BMI) and risk factors for obesity in children with Diamond-Blackfan Anemia (DBA).
METHODS:
The children with DBA who attended National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, from January 2003 to December 2020 were enrolled as subjects. The related clinical data and treatment regimens were recorded. The height and weight data measured within 1 week before or after follow-up time points were collected to calculate BMI. The risk factors for obesity were determined by multivariate regression analysis in children with DBA.
RESULTS:
A total of 129 children with DBA were enrolled, among whom there were 80 boys (62.0%) and 49 girls (38.0%), with a median age of 49 months (range 3-189 months). The prevalence rate of obesity was 14.7% (19/129). The multivariate logistic regression analysis showed that the absence of ribosomal protein gene mutation was closely associated with obesity in children with DBA (adjusted OR=3.63, 95%CI: 1.16-11.38, adjusted P=0.027). In children with glucocorticoid-dependent DBA, obesity was not associated with age of initiation of glucocorticoid therapy, duration of glucocorticoid therapy, and maintenance dose of glucocorticoids (P>0.05).
CONCLUSIONS
There is a high prevalence rate of obesity in children with DBA, and the absence of ribosomal protein gene mutation is closely associated with obesity in children with DBA.
Child
;
Male
;
Female
;
Humans
;
Anemia, Diamond-Blackfan/genetics*
;
Pediatric Obesity/complications*
;
Glucocorticoids/therapeutic use*
;
Prevalence
;
Risk Factors
;
Ribosomal Proteins/genetics*
;
Mutation
8.UPF1 increases amino acid levels and promotes cell proliferation in lung adenocarcinoma via the eIF2α-ATF4 axis.
Lei FANG ; Huan QI ; Peng WANG ; Shiqing WANG ; Tianjiao LI ; Tian XIA ; Hailong PIAO ; Chundong GU
Journal of Zhejiang University. Science. B 2022;23(10):863-875
Up-frameshift 1 (UPF1), as the most critical factor in nonsense-mediated messenger RNA (mRNA) decay (NMD), regulates tumor-associated molecular pathways in many cancers. However, the role of UPF1 in lung adenocarcinoma (LUAD) amino acid metabolism remains largely unknown. In this study, we found that UPF1 was significantly correlated with a portion of amino acid metabolic pathways in LUAD by integrating bioinformatics and metabolomics. We further confirmed that UPF1 knockdown inhibited activating transcription factor 4 (ATF4) and Ser51 phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), the core proteins in amino acid metabolism reprogramming. In addition, UPF1 promotes cell proliferation by increasing the amino-acid levels of LUAD cells, which depends on the function of ATF4. Clinically, UPF1 mRNA expression is abnormal in LUAD tissues, and higher expression of UPF1 and ATF4 was significantly correlated with poor overall survival (OS) in LUAD patients. Our findings reveal that UPF1 is a potential regulator of tumor-associated amino acid metabolism and may be a therapeutic target for LUAD.
Activating Transcription Factor 4/genetics*
;
Adenocarcinoma of Lung
;
Amino Acids
;
Cell Proliferation
;
Eukaryotic Initiation Factor-2
;
Humans
;
Lung Neoplasms
;
RNA Helicases/metabolism*
;
RNA, Messenger/metabolism*
;
Trans-Activators/metabolism*
9.LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells.
Zhen SUN ; Hua YU ; Jing ZHAO ; Tianyu TAN ; Hongru PAN ; Yuqing ZHU ; Lang CHEN ; Cheng ZHANG ; Li ZHANG ; Anhua LEI ; Yuyan XU ; Xianju BI ; Xin HUANG ; Bo GAO ; Longfei WANG ; Cristina CORREIA ; Ming CHEN ; Qiming SUN ; Yu FENG ; Li SHEN ; Hao WU ; Jianlong WANG ; Xiaohua SHEN ; George Q DALEY ; Hu LI ; Jin ZHANG
Protein & Cell 2022;13(7):490-512
LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.
Animals
;
Cell Differentiation
;
Embryo, Mammalian/metabolism*
;
Embryonic Development
;
Mice
;
Pluripotent Stem Cells/metabolism*
;
RNA, Messenger/genetics*
;
RNA, Ribosomal
;
RNA-Binding Proteins/metabolism*
;
Transcription Factors/metabolism*
;
Zygote/metabolism*
10.Exploration of the therapeutic mechanism of Yiqi Jiedu recipe for treatment of primary liver cancer based on network pharmacology and molecular docking.
Meng XU ; Peng ZHANG ; Guo Liang ZHANG
Journal of Southern Medical University 2022;42(6):805-814
OBJECTIVE:
To explore the effective components of Yiqi Jiedu recipe and the main biological processes and signal pathways involved in the therapeutic mechanism of the recipe in treatment of primary liver cancer through network pharmacology and molecular docking approaches.
METHODS:
TCMSP, Uniport, Genecards and String databases were searched to obtain the target genes of drugs and disease using Cytoscape 3.8.2 software. GO and KEGG enrichment analyses were performed to identify the common genes in the target genes of the drugs and disease. Using Pubcham, RCSB and Autoduck, the effective components of the drugs were connected with the final core genes. The effects of different concentrations of Yiqi Jiedu recipe on the expressions of the core genes DHX9, HNRNPK, NCL and PABPC1 in HepG2 cells were analyzed with Western blotting and real- time fluorescence quantitative PCR.
RESULTS:
We finally identified 8 core genes from the drug and disease targets, including DDX5, HNRNPK, PABPC1, DHX9, RPS3A, RPS3, RPL13, and NCL. GO analysis showed that these core genes were involved mainly in the biological processes of adrenaline receptor signal communication, movement of cellular or subcellular components, blood particles, adhesion class and iron ion binding. KEGG analysis showed that the Ras signaling pathway had the greatest gene enrichment. The results of molecular docking suggested that the effective components of the recipe were capable of docking with the core genes under natural conditions, and PABPC1 and stigmasterol had the highest binding energy. In HepG2 cells, treatment with 10% medicated serum for 48 h had the strongest effect on the expression of DHX9, HNRNPK, NCL and PABPC1 (P < 0.05).
CONCLUSION
Yiqi Jiedu recipe is capable of regulating viral expression of primary liver cancer multiple effective components that bind to DHX9, HNRNPK, NCL and PABPC1.
DEAD-box RNA Helicases
;
Drugs, Chinese Herbal/therapeutic use*
;
Humans
;
Liver Neoplasms/drug therapy*
;
Molecular Docking Simulation
;
Neoplasm Proteins
;
Network Pharmacology
;
Ribosomal Proteins
;
Signal Transduction

Result Analysis
Print
Save
E-mail