1.Chinese expert consensus on drug interaction management of poly ADP-ribose polymerase inhibitors.
Chinese Journal of Oncology 2023;45(7):584-593
Poly ADP-ribose polymerase inhibitors (PARPi), which approved in recent years, are recommended for ovarian cancer, breast cancer, pancreatic cancer, prostate cancer and other cancers by The National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) guidelines. Because most of PARPi are metabolized by cytochrome P450 enzyme system, there are extensive interactions with other drugs commonly used in cancer patients. By setting up a consensus working group including pharmaceutical experts, clinical experts and methodology experts, this paper forms a consensus according to the following steps: determine clinical problems, data retrieval and evaluation, Delphi method to form recommendations, finally formation expert opinion on PARPi interaction management. This paper will provide practical reference for clinical medical staff.
Male
;
Female
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Consensus
;
Ovarian Neoplasms/drug therapy*
;
Drug Interactions
;
Adenosine Diphosphate Ribose/therapeutic use*
3.Microbial production of S-adenosyl-l-methionine: a review.
Meijing LI ; Zheyan MI ; Jinhao WANG ; Zhongce HU ; Haibin QIN ; Yuanshan WANG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(6):2248-2264
S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.
S-Adenosylmethionine/metabolism*
;
Plant Breeding
;
Fermentation
;
Metabolic Engineering
4.Difference of lipid-lowering efficacy of "Xinjianqu" before and after fermentation and its mechanism based on LKB1-AMPK pathway and 16S rDNA sequencing technology.
De-Hua LI ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Jian-Guang ZHU ; Meng-Mei SUN ; Jia QIAO
China Journal of Chinese Materia Medica 2023;48(8):2146-2159
On the basis of establishing the prescription of Xinjianqu and clarifying the increase of the lipid-lowering active ingredients of Xinjianqu by fermentation, this paper further compared the differences in the lipid-lowering effects of Xinjianqu before and after fermentation, and studied the mechanism of Xinjianqu in the treatment of hyperlipidemia. Seventy SD rats were randomly divided into seven groups, including normal group, model group, positive drug simvastatin group(0.02 g·kg~(-1)), and low-dose and high-dose Xinjianqu groups before and after fermentation(1.6 g·kg~(-1) and 8 g·kg~(-1)), with ten rats in each group. Rats in each group were given high-fat diet continuously for six weeks to establish the model of hyperlipidemia(HLP). After successful modeling, the rats were given high-fat diet and gavaged by the corresponding drugs for six weeks, once a day, to compare the effects of Xinjianqu on the body mass, liver coefficient, and small intestine propulsion rate of rats with HLP before and after fermentation. The effects of Xinjianqu before and after fermentation on total cholesterol(TC), triacylglyceride(TG), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), alanine aminotransferase(ALT), aspartate aminotransferase(AST), blood urea nitrogen(BUN), creatinine(Cr), motilin(MTL), gastrin(GAS), and the Na~+-K~+-ATPase levels were determined by enzyme-linked immunosorbent assay(ELISA). The effects of Xinjianqu on liver morphology of rats with HLP were investigated by hematoxylin-eosin(HE) staining and oil red O fat staining. The effects of Xinjianqu on the protein expression of adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK), liver kinase B1(LKB1), and 3-hydroxy-3-methylglutarate monoacyl coenzyme A reductase(HMGCR) in liver tissues were investigated by immunohistochemistry. The effects of Xinjianqu on the regulation of intestinal flora structure of rats with HLP were studied based on 16S rDNA high-throughput sequencing technology. The results showed that compared with those in the normal group, rats in the model group had significantly higher body mass and liver coefficient(P<0.01), significantly lower small intestine propulsion rate(P<0.01), significantly higher serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2(P<0.01), and significantly lower serum levels of HDL-C, MTL, GAS, Na~+-K~+-ATP levels(P<0.01). The protein expression of AMPK, p-AMPK, and LKB1 in the livers of rats in the model group was significantly decreased(P<0.01), and that of HMGCR was significantly increased(P<0.01). In addition, the observed_otus, Shannon, and Chao1 indices were significantly decreased(P<0.05 or P<0.01) in rat fecal flora in the model group. Besides, in the model group, the relative abundance of Firmicutes was reduced, while that of Verrucomicrobia and Proteobacteria was increased, and the relative abundance of beneficial genera such as Ligilactobacillus and Lachnospiraceae_NK4A136_group was reduced. Compared with the model group, all Xinjianqu groups regulated the body mass, liver coefficient, and small intestine index of rats with HLP(P<0.05 or P<0.01), reduced the serum levels of TC, TG, LDL-C, ALT, AST, BUN, Cr, and AQP2, increased the serum levels of HDL-C, MTL, GAS, and Na~+-K~+-ATP, improved the liver morphology, and increased the protein expression gray value of AMPK, p-AMPK, and LKB1 in the liver of rats with HLP and decreased that of LKB1. Xinjianqu groups could regulate the intestinal flora structure of rats with HLP, increased observed_otus, Shannon, Chao1 indices, and increased the relative abundance of Firmicutes, Ligilactobacillus(genus), Lachnospiraceae_NK4A136_group(genus). Besides, the high-dose Xinjianqu-fermented group had significant effects on body mass, liver coefficient, small intestine propulsion rate, and serum index levels of rats with HLP(P<0.01), and the effects were better than those of Xinjianqu groups before fermentation. The above results show that Xinjianqu can improve the blood lipid level, liver and kidney function, and gastrointestinal motility of rats with HLP, and the improvement effect of Xinjianqu on hyperlipidemia is significantly enhanced by fermentation. The mechanism may be related to AMPK, p-AMPK, LKB1, and HMGCR protein in the LKB1-AMPK pathway and the regulation of intestinal flora structure.
Rats
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Rats, Sprague-Dawley
;
Cholesterol, LDL
;
Fermentation
;
Aquaporin 2/metabolism*
;
Lipid Metabolism
;
Liver
;
Lipids
;
Hyperlipidemias/genetics*
;
Adenosine Triphosphate/pharmacology*
;
Diet, High-Fat/adverse effects*
5.Effect of multi-glycosides of Tripterygium wilfordii on renal injury in diabetic kidney disease rats through NLRP3/caspase-1/GSDMD pyroptosis pathway.
Chun-Dong SONG ; Dan SONG ; Ping-Ping JIA ; Feng-Yang DUAN ; Ying DING ; Xian-Qing REN ; Wen-Sheng ZHAI ; Yao-Xian WANG ; Shu-Li HUANG
China Journal of Chinese Materia Medica 2023;48(10):2639-2645
This study investigated the effect of multi-glycosides of Tripterygium wilfordii(GTW) on renal injury in diabetic kidney disease(DKD) rats through Nod-like receptor protein 3(NLRP3)/cysteine-aspartic acid protease-1(caspase-1)/gsdermin D(GSDMD) pyroptosis pathway and the mechanism. To be specific, a total of 40 male SD rats were randomized into the normal group(n=8) and modeling group(n=34). In the modeling group, a high-sugar and high-fat diet and one-time intraperitoneal injection of streptozotocin(STZ) were used to induce DKD in rats. After successful modeling, they were randomly classified into model group, valsartan(Diovan) group, and GTW group. Normal group and model group were given normal saline, and the valsartan group and GTW group received(ig) valsartan and GTW, respectively, for 6 weeks. Blood urea nitrogen(BUN), serum creatinine(Scr), alanine ami-notransferase(ALT), albumin(ALB), and 24 hours urinary total protein(24 h-UTP) were determined by biochemical tests. The pathological changes of renal tissue were observed based on hematoxylin and eosin(HE) staining. Serum levels of interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression of pyroptosis pathway-related proteins in renal tissue, and RT-PCR to determine the expression of pyroptosis pathway-related genes in renal tissue. Compared with the normal group, the model group showed high levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), low level of ALB(P<0.01), severe pathological damage to kidney, and high protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01). Compared with the model group, valsartan group and GTW group had low levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), high level of ALB(P<0.01), alleviation of the pathological damage to the kidney, and low protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01 or P<0.05). GTW may inhibit pyroptosis by decreasing the expression of NLRP3/caspase-1/GSDMD in renal tissue, thereby relieving the inflammatory response of DKD rats and the pathological injury of kidney.
Rats
;
Male
;
Animals
;
Diabetic Nephropathies/genetics*
;
Interleukin-18/metabolism*
;
Glycosides/pharmacology*
;
Tripterygium
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Caspase 1/metabolism*
;
Pyroptosis
;
Uridine Triphosphate/pharmacology*
;
Kidney
;
Valsartan/pharmacology*
;
RNA, Messenger/metabolism*
;
Diabetes Mellitus
6.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
Animals
;
Reactive Oxygen Species/metabolism*
;
Antioxidants/pharmacology*
;
Oxidative Stress
;
NF-E2-Related Factor 2/metabolism*
;
Caspase 3/metabolism*
;
Parkinson Disease/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Drosophila/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Superoxide Dismutase/metabolism*
;
Adenosine Triphosphate/pharmacology*
7.Gene clone and functional identification of sterol glycosyltransferases from Paris polyphylla var. yunnanensis.
Min HE ; Si-Yuan GUO ; Yan YIN ; Chi ZHANG ; Xia-Nan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3774-3785
In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl β-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.
Ligands
;
Glycosyltransferases/genetics*
;
Sterols
;
Phylogeny
;
Ascomycota
;
Liliaceae/chemistry*
;
Melanthiaceae
;
Diosgenin
;
Sugars
;
Glucose
;
Uridine Diphosphate
8.Correlation of mitochondrial tRNA variants with coronary heart disease in a Chinese pedigree.
Yu DING ; Jinfang YU ; Beibei GAO ; Jinyu HUANG
Chinese Journal of Medical Genetics 2023;40(7):807-814
OBJECTIVE:
To explore the correlation of mitochondrial DNA (mtDNA) variants and coronary heart disease (CHD) in a Chinese pedigree and the possible molecular mechanisms.
METHODS:
A Chinese pedigree featuring matrilineal inheritance of CHD who visited Hangzhou First People's Hospital in May 2022 was selected as the study subject. Clinical data of the proband and her affected relatives was collected. By sequencing the mtDNA of the proband and her pedigree members, candidate variants were identified through comparison with wild type mitochondrial genes. Conservative analysis among various species was conducted, and bioinformatics software was used to predict the impact of variants on the secondary structure of tRNA. Real-time PCR was carried out to determine the copy number of mtDNA, and a transmitochondrial cell line was established for analyzing the mitochondrial functions, including membrane potential and ATP level.
RESULTS:
This pedigree had contained thirty-two members from four generations. Among ten maternal members, four had CHD, which yielded a penetrance rate of 40%. Sequence analysis of proband and her matrilineal relatives revealed the presence of a novel m.4420A>T variant and a m.10463T>C variant, both of which were highly conserved among various species. Structurally, the m.4420A>T variant had occurred at position 22 in the D-arm of tRNAMet, which disrupted the 13T-22A base-pairing, while the m.10463T>C variant was located at position 67 in the acceptor arm of tRNAArg, a position critical for steady-state level of the tRNA. Functional analysis revealed that patients with the m.4420A>T and m.10463T>C variants exhibited much fewer copy number of mtDNA and lower mitochondrial membrane potential (MMP) and ATP contents (P < 0.05), which were decreased by approximately 50.47%, 39.6% and 47.4%, respectively.
CONCLUSION
Mitochondrial tRNAMet 4420A>T and tRNAArg 10463T>C variants may underlay the maternally transmitted CHD in this pedigree, which had shown variation in mtDNA homogeneity, age of onset, clinical phenotype and other differences, suggesting that nuclear genes, environmental factors and mitochondrial genetic background have certain influence on the pathogenesis of CHD.
Humans
;
Female
;
Mutation
;
Pedigree
;
RNA, Transfer, Met
;
East Asian People
;
RNA, Transfer, Arg
;
DNA, Mitochondrial/genetics*
;
Coronary Disease/genetics*
;
Adenosine Triphosphate
9.Echinococcus granulosus cyst fluid(EgCF) inhibits the migration and phagocytic function of mouse macrophages induced by LPS via inducing cytoskeletal rearrangement.
Feiming HE ; Dan DONG ; Yuting CHEN ; Yuan LIAO ; Ke LIN ; Jin MENG ; Xiangwei WU ; Xueling CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):385-390
Objective To investigate the effect of Echinococcus granulosus cyst fluid(EgCF) on the cytoskeletal rearrangement and phagocytosis and the migration of macrophages induced by lipopolysaccharide(LPS). Methods Peritoneal macrophages of C57BL/6 mice were isolated and cultured in vitro, and divided into control group and LPS group and LPS combined with EgCF group. After 48 hours of treatment, filamentous actin (F-actin) changes were observed with rhodamine-labelled phalloidin staining and fluorescence microscopy; TranswellTM chamber was used to test cell migration ability and flow cytometry to test cell phagocytosis. After 1 hour of treatment, PI3K and AKT, phosphorylated AKT (p-AKT), Rac1, guanosine triphospho-Rac1 (GTP-Rac1), WASP and Arp2 protein expressions were detected with Western blot analysis. Results Compared with the control group, after LPS stimulation, macrophages were deformed significantly; pseudopodia increased; actin cytoskeleton increased and was more distributed in pseudopodia; the ability of migration and phagocytosis were significantly improved, and the expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 proteins significantly increased. EgCF treatment caused cell shrinkage and disappearance of pseudopodia protrusions of LPS-activated cells, and led to the reduced phagocytic and migratory of cells; the protein expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 decreased significantly compared with the LPS group. Conclusion LPS induces the migration and enhances phagocytosis of macrophages while EgCF inhibits these effects, which is related to actin cytoskeleton rearrangement.
Mice
;
Animals
;
Lipopolysaccharides/pharmacology*
;
Echinococcus granulosus/metabolism*
;
Proto-Oncogene Proteins c-akt
;
Cyst Fluid/metabolism*
;
Mice, Inbred C57BL
;
Macrophages/metabolism*
;
Phagocytosis
;
Actins/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Guanosine Triphosphate/pharmacology*
10.Activation-induced cytidine deaminase (AID) involved in the regulation of B cell immune senescence.
Jiaping XIAO ; Jun LI ; Xinsheng YAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):474-478
The humoral immune response of B cells is the key to the protection of specific immunity, and immune aging reshapes its production and function. The decreased B cell immune function is an indicator of immune senescence. The impaired humoral immune function mediated by antibody secreted by B cells leads to a decline in the response of elderly individuals to the vaccine. These people are therefore more susceptible to infection and deterioration, and have a higher incidence of tumors and metabolic diseases. Activation-induced cytidine deaminase (AID) is an enzyme that triggers immunoglobulin class conversion recombination (CSR) and somatic high frequency mutation (SHM). It decreases during immune senescence and is considered to be a biomarker of decreased B cell function in aging mice and humans. Understanding the inherent defects of B-cell immune senescence and the regulation mechanism of AID in the aging process can provide new research ideas for the susceptibility, prevention and treatment of diseases in the elderly.
Animals
;
Humans
;
Mice
;
Aging/metabolism*
;
B-Lymphocytes/metabolism*
;
Cytidine Deaminase/metabolism*
;
Somatic Hypermutation, Immunoglobulin

Result Analysis
Print
Save
E-mail