1.Targeting chimera technology: A new tool for undruggable in breast cancer.
Zhongwu CHEN ; Sandi SHEN ; Xiaoyu SONG ; Bin XIAO
Journal of Central South University(Medical Sciences) 2025;50(7):1244-1254
Breast cancer is one of the most common and fatal malignancies among women worldwide, and its treatment efficacy is often limited by drug resistance and the presence of undruggable targets. Traditional small-molecule drugs have difficulty effectively modulating certain critical targets such as transcription factors and non-coding RNAs, necessitating new therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) function by recruiting pathogenic proteins to the cellular ubiquitin-proteasome system, thereby inducing their specific degradation. In contrast, ribonuclease-targeting chimeras (RIBOTACs) utilize small-molecule ligands but bind to RNA and direct endogenous RNases to selectively degrade pathogenic RNA molecules. By employing a "degradation rather than inhibition" mechanism, targeting chimera technology broadens the druggable landscape and offers a novel precision therapeutic strategy for breast cancer, particularly for refractory and drug-resistant cases. This approach not only overcomes the limitations of traditional drugs, such as the absence of suitable binding sites or poor selectivity, but also reduces required dosages and potential adverse effects. Recent studies have preliminarily demonstrated the therapeutic potential of PROTACs and RIBOTACs in breast cancer, encompassing target design, mechanistic investigation, and preclinical as well as early clinical applications. Research into these technologies reveals their ability to tackle previously undruggable targets, thereby providing theoretical support for the development of safer and more effective precision therapies for breast cancer. In the future, with advances in drug delivery systems and clinical trials, PROTACs and RIBOTACs are expected to be used synergistically with immunotherapy and chemotherapy, offering breast cancer patients more promising comprehensive treatment options and potentially driving oncology toward broader intervention of undruggable targets.
Humans
;
Breast Neoplasms/drug therapy*
;
Female
;
Proteolysis
;
Ribonucleases/metabolism*
;
Molecular Targeted Therapy/methods*
;
Antineoplastic Agents/therapeutic use*
2.Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2.
Peipei LIU ; Jinliang HUANG ; Qian ZHENG ; Leiming XIE ; Xinping LU ; Jie JIN ; Geng WANG
Protein & Cell 2017;8(10):735-749
Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMS-localized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.
Cell Line
;
Humans
;
Mitochondrial Membranes
;
metabolism
;
Protein Transport
;
RNA
;
biosynthesis
;
chemistry
;
metabolism
;
RNA Stability
;
RNA, Mitochondrial
;
Ribonucleases
;
metabolism
;
Tumor Suppressor Proteins
;
metabolism
3.Construction and Expression of RNase-Resisting His-Tagged Virus-Like Particles Containing FluA/B mRNA.
Jin ZHANG ; Xiaoning XUE ; Hefei XU ; Ke ZHU ; Xiaoguang CHEN ; Juan ZHANG ; Qi ZHANG ; Yuan LIN
Chinese Journal of Virology 2015;31(6):629-633
To prepare virus-like particles containing FluA/B mRNA as RNA standard and control in Influenza RNA detection, the genes coding the coat protein and maturase of E. coli bacteriophage MS2 were amplified and cloned into D-pET32a vector. Then we inserted 6 histidines to MS2 coat protein by QuikChange Site-Directed Mutagenesis Kit to construct the universal expressing vector D-pET32a-CP-His. In addition, the partial gene fragments of FluA and FluB were cloned to the down-stream of expressing vector. The recombinant plasmid D-pET32a-CP-His-FluA/B was transformed to BL21 with induction by IPTG. The virus-like particles were purified by Ni+ chromatography. The virus-like particles can be detected by RT-PCR, but not PCR. They can be conserved stably for at least 3 months at both 4 degrees C and -20 degrees C. His-tagged virus-like particles are more stable and easier to purification. It can be used as RNA standard and control in Influenza virus RNA detection.
Escherichia coli
;
genetics
;
metabolism
;
Influenza A virus
;
genetics
;
metabolism
;
Influenza B virus
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Viral
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
Ribonucleases
;
chemistry
;
Virion
;
genetics
;
metabolism
4.Expression, purification and characterization of recombinant onconase expressed in Pichia pastoris.
Ganggang YANG ; Chengkai MA ; Quanyi ZHANG ; Shihui SHI ; Ze WANG ; Zhongyuan LÜ ; Xuyang WANG ; Xiaoya XU ; Qingqing CUI ; Jihong ZHANG ; Ruigang ZHANG ; Cunshuan XU
Chinese Journal of Biotechnology 2015;31(11):1632-1642
Ranpirnase (onconase, ONC) is a new drug, with weak RNase activity and strong cytotoxicity to various tumor cells in vitro and in vivo. This study is to obtain recombination onconase (rONC) with high bioactivity. Based on the codon preference of Pichia pastoris, we designed and synthesized the gene according to cDNA sequences of ONC and the α mating factor's prepeptide. We screened positive clones after transforming the recombination plasmids into P. pastoris X-33, GSS115 and SMD1168. We screened the best combination of seven different vectors and host strains. Moreover, we optimized culture condition in shake flasks and 10 L bioreactor, and purified rONC from the supernatant after inducing it with 0.25% methanol by aqueous two-phase extraction coupling G50 molecular exclusion method. The highest rONC production was 13 mg/L in pPICZα-A/X-33/ONC combination under the condition of pH 5.5 and 23 degrees C in shake flasks for 7 d; and that the highest rONC production was 180 mg/L when the induction is performed in the lower basic salt medium with pH 5.5 in the 10 L bioreactor for 7 d. The yield of rONC is more than 90% at a purity of above 95%. rONC can kill various tumor cells in vitro. The expression and purification of rONC would be useful for further investigation of this new drug.
Antineoplastic Agents
;
metabolism
;
Bioreactors
;
Cell Line, Tumor
;
Codon
;
DNA, Complementary
;
Genetic Vectors
;
Humans
;
Pichia
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Ribonucleases
;
biosynthesis
5.miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes.
Mohammad Shahidul MAKKI ; Tariq M HAQQI
Experimental & Molecular Medicine 2015;47(10):e189-
IL-6 is an inflammatory cytokine and its overexpression plays an important role in osteoarthritis (OA) pathogenesis. Expression of IL-6 is regulated post-transcriptionally by MCPIP1. The 3' untranslated region (UTR) of MCPIP1 mRNA harbors a miR-139 'seed sequence', therefore we examined the post-transcriptional regulation of MCPIP1 by miR-139 and its impact on IL-6 expression in OA chondrocytes. Expression of miR-139 was found to be high in the damaged portion of the OA cartilage compared with unaffected cartilage from the same patient and was also induced by IL-1beta in OA chondrocytes. Inhibition of miR-139 decreased the expression of IL-6 mRNA by 38% and of secreted IL-6 protein by 40%. However, overexpression of miR-139 increased the expression of IL-6 mRNA by 36% and of secreted IL-6 protein by 56%. These data correlated with altered expression profile of MCPIP1 in transfected chondrocytes. Studies with a luciferase reporter construct confirmed the interactions of miR-139 with the 'seed sequence' located in the 3' UTR of MCPIP mRNA. Furthermore, miR-139 overexpression increased the catabolic gene expression but expression of anabolic markers remained unchanged. Overexpression of miR-139 also induced apoptosis in OA chondrocytes. Importantly, we also discovered that IL-6 is a potent inducer of miR-139 expression in OA chondrocytes. These findings indicate that miR-139 functions as a post-transcriptional regulator of MCPIP1 expression and enhances IL-6 expression, which further upregulates miR-139 expression in OA chondrocytes. These results support our hypothesis that miR-139-mediated downregulation of MCPIP1 promotes IL-6 expression in OA. Therefore, targeting miR-139 could be therapeutically beneficial in the management of OA.
3' Untranslated Regions
;
Aged
;
*Apoptosis
;
Chondrocytes/*metabolism/pathology
;
Down-Regulation
;
Female
;
Gene Expression Regulation
;
Humans
;
Interleukin-6/*genetics
;
Male
;
MicroRNAs/*genetics
;
Middle Aged
;
Osteoarthritis/*genetics/pathology
;
RNA, Messenger/genetics
;
Ribonucleases/*genetics
;
Transcription Factors/*genetics
;
Up-Regulation
6.MCPIP1 mediates MCP-1-induced vascular smooth muscle cell proliferation.
Yi-Jun YANG ; Liu-Song WU ; Bo SHU ; Min-Zhang QIAN
Acta Physiologica Sinica 2013;65(6):616-622
The aim of the present study is to investigate whether monocyte chemotactic protein-1 (MCP-1)-induced vascular smooth muscle cell (VSMC) proliferation is mediated via monocyte chemotactic protein-1 induced protein-1 (MCPIP1). MCPIP1 expressions in cultured VSMC were detected by real-time PCR and Western blot following MCP-1 incubation. After MCPIP1 was silenced by siRNA, cell number was counted by hemocytometer, VSMC activity was analyzed by CCK-8 kit, percentage of DNA synthesis was detected by EdU kit, percentage of S phase cell numbers were measured by flow cytometry, and c-fos mRNA expression induced by MCP-1 or platelet-derived growth factor (PDGF) was detected by real-time PCR. The results showed MCP-1 increased MCPIP1 mRNA and up-regulated MCPIP1 protein expression in dose- and time-dependent manners. Cell counts, cellular activity, the percentage of DNA synthesis, and the percentage of S phase cell numbers were remarkably decreased in MCPIP1 siRNA group, compared with those in MCP-1 group. The enhancing effect of MCP-1 or PDGF on c-fos mRNA expression was inhibited by MCPIP1 siRNA. These results suggest that MCP-1-induced VSMC proliferation is mediated via MCPIP1, and the underlying mechanism may involve c-fos expression up-regulation.
Cell Proliferation
;
Cells, Cultured
;
Chemokine CCL2
;
pharmacology
;
Humans
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
cytology
;
Platelet-Derived Growth Factor
;
pharmacology
;
Real-Time Polymerase Chain Reaction
;
Ribonucleases
;
metabolism
;
Transcription Factors
;
metabolism
;
Up-Regulation
7.Quantitative Determination of Plasmodium Parasitemia by Flow Cytometry and Microscopy.
Gyo JUN ; Jeong Sam LEE ; Yun Jae JUNG ; Jae Won PARK
Journal of Korean Medical Science 2012;27(10):1137-1142
The traditional light microscopy has limitations for precise growth assays of malaria parasites in culture or for assessment of new compounds for antimalarial activity; the speed and high reproducibility of flow cytometry can overcome these limitations. A flow cytometric method using PicoGreen, a DNA-binding fluorochrome, was developed with optimal precision suitable for performing growth assays of low-parasitemia field isolates. In addition, intra- and inter-person reproducibility of the flow cytometric and the microscopic method were compared in order to quantitatively demonstrate the improved precision. RNase treatment contributed to the precision of the flow cytometric measurements by enhancing the signal-to-noise ratios. Coefficients of variation of the method were smaller than 10% for 0.1% or higher parasitemia samples. The intra- and inter-person coefficients of variation of the flow cytometric method were three to six times smaller than those of the microscopic method. The flow cytometric method developed in this study yielded substantially more precise results than the microscopic method, allowing determination of parasitemia levels of 0.1% or higher, with coefficients of variation smaller than 10%. Thus, the PicoGreen method could be a reliable high sensitivity assay for analysis of low parasitemia samples and might be applied to a high throughput system testing antimalarial drug activity.
*Flow Cytometry
;
Fluorescent Dyes/chemistry
;
Humans
;
*Microscopy
;
Organic Chemicals/chemistry
;
Parasitemia/*diagnosis
;
Plasmodium falciparum/*isolation & purification
;
Reproducibility of Results
;
Ribonucleases/metabolism
;
Signal-To-Noise Ratio
8.MCP-1-induced protein-1, an immune regulator.
Jiwei XU ; Sheng FU ; Wei PENG ; Zihe RAO
Protein & Cell 2012;3(12):903-910
MCP-1-induced protein-1 (MCPIP1) is a newly identified protein that is crucial to immune regulation. Mice lacking MCPIP1 gene suffer from severe immune disorders, and most of them cannot survive longer than 12 weeks. Considerable progress has been made in revealing the mechanism underlying the immune regulatory function of MCPIP1. MCPIP1 can act as an RNase to promote the mRNA degradation of some inflammatory cytokines, such as IL-6 and IL-1. Pre-microRNAs are also confirmed to be the substrate of MCPIP1 RNase. The structure of MCPIP1 N-terminal conserved domain shows a PilT N-terminus-like RNase structure, further supporting the notion that MCPIP1 has RNase activity. MCPIP1 can also deubiquitinate TNF receptor-associated factor family proteins, which are known to mediate immune and inflammatory responses. In this review, we summarize recent progress on the immune regulatory role of MCPIP1 and discuss the mechanisms underlying its function.
Amino Acid Sequence
;
Animals
;
Humans
;
Immunity
;
Molecular Sequence Data
;
Ribonucleases
;
metabolism
;
Transcription Factors
;
chemistry
;
metabolism
;
Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
;
metabolism
;
Ubiquitination
9.The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability.
Kentaro ITO ; Akinori TAKAHASHI ; Masahiro MORITA ; Toru SUZUKI ; Tadashi YAMAMOTO
Protein & Cell 2011;2(9):755-763
The human CCR4-NOT deadenylase complex consists of at least nine enzymatic and non-enzymatic subunits. Accumulating evidence suggests that the non-enzymatic subunits are involved in the regulation of mRNA deadenylation, although their precise roles remain to be established. In this study, we addressed the function of the CNOT1 subunit by depleting its expression in HeLa cells. Flow cytometric analysis revealed that the sub G(1) fraction was increased in CNOT1-depleted cells. Virtually, the same level of the sub G1 fraction was seen when cells were treated with a mixture of siRNAs targeted against all enzymatic subunits, suggesting that CNOT1 depletion induces apoptosis by destroying the CCR4-NOT-associated deadenylase activity. Further analysis revealed that CNOT1 depletion leads to a reduction in the amount of other CCR4-NOT subunits. Importantly, the specific activity of the CNOT6L immunoprecipitates-associated deadenylase from CNOT1-depleted cells was less than that from control cells. The formation of P-bodies, where mRNA decay is reported to take place, was largely suppressed in CNOT1-depleted cells. Therefore, CNOT1 has an important role in exhibiting enzymatic activity of the CCR4-NOT complex, and thus is critical in control of mRNA deadenylation and mRNA decay. We further showed that CNOT1 depletion enhanced CHOP mRNA levels and activated caspase-4, which is associated with endoplasmic reticulum ER stress-induced apoptosis. Taken together, CNOT1 depletion structurally and functionally deteriorates the CCR4-NOTcomplex and induces stabilization of mRNAs, which results in the increment of translation causing ER stress-mediated apoptosis. We conclude that CNOT1 contributes to cell viability by securing the activity of the CCR4-NOT deadenylase.
Apoptosis
;
Caspases, Initiator
;
genetics
;
metabolism
;
Cell Survival
;
Endoplasmic Reticulum
;
enzymology
;
Enzyme Activation
;
Flow Cytometry
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Protein Subunits
;
genetics
;
metabolism
;
RNA Stability
;
RNA, Messenger
;
analysis
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Ribonucleases
;
metabolism
;
Stress, Physiological
;
Transcription Factor CHOP
;
genetics
;
metabolism
;
Transcription Factors
;
genetics
;
metabolism
;
Transfection
10.Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein.
Gui-Zhi CHENG ; Jian-Yuan LI ; Fang LI ; Hai-Yan WANG ; Guang-Xia SHI
Asian Journal of Andrology 2009;11(2):240-251
To explore the functions of human ribonuclease 9 (RNase 9), we constructed a mammalian fusion expression vector pcDNA-hRNase9, prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N-terminal amino acid sequences. According to the determined mature protein, recombinant human RNase 9 was prepared in E. coli. Ribonucleolytic activity and antibacterial activity of recombinant human RNase 9 were detected, and the distribution of human RNase 9 on tissues and ejaculated spermatozoa and in vitro capacitated spermatozoa were analyzed via indirect immunofluorescence assay. The results showed that recombinant human RNase 9 did not exhibit detectable ribonucleolytic activity against yeast tRNA, but exhibited antibacterial activity, in a concentration/time dependent manner, against E. coli. Immunofluorescent analyses showed that the predicted human RNase 9 was present throughout the epididymis, but not present in other tissues examined, and human RNase 9 was also present on the entire head and neck regions of human ejaculated spermatozoa and in vitro capacitated spermatozoa. These results suggest that human RNase 9 may play roles in host defense of male reproductive tract.
Adult
;
Amino Acid Sequence
;
Anti-Infective Agents
;
metabolism
;
Blotting, Western
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
Epididymis
;
enzymology
;
Escherichia coli
;
enzymology
;
Genetic Vectors
;
Humans
;
Male
;
Molecular Sequence Data
;
Recombinant Fusion Proteins
;
chemistry
;
metabolism
;
Ribonuclease, Pancreatic
;
metabolism
;
Ribonucleases
;
chemistry
;
metabolism
;
Seminal Plasma Proteins
;
chemistry
;
metabolism
;
Spermatozoa
;
metabolism
;
Testis
;
enzymology
;
Young Adult

Result Analysis
Print
Save
E-mail