1.Multi-omics analysis of hormesis effect of lanthanum chloride on carotenoid synthesis in Rhodotorula mucilaginosa.
Hong ZHANG ; Tong WEN ; Zhihong WANG ; Xin ZHAO ; Hao WU ; Pengcheng XIANG ; Yong MA
Chinese Journal of Biotechnology 2025;41(4):1631-1648
Hormesis effect has been observed in the secondary metabolite synthesis of microorganisms induced by rare earth elements. However, the underlying molecular mechanism remains unclear. To analyze the molecular mechanism of the regulatory effect of Rhodotorula mucilaginosa in the presence of lanthanum chloride, different concentrations of lanthanum chloride were added to the fermentation medium of Rhodotorula mucilaginosa, and the carotenoid content was subsequently measured. It was found that the concentrations of La3+ exerting the promotional and inhibitory effects were 0-100 mg/L and 100-400 mg/L, respectively. Furthermore, the expression of 33 genes and the synthesis of 55 metabolites were observed to be up-regulated, while the expression of 85 genes and the synthesis of 123 metabolites were found to be down-regulated at the concentration range of the promotional effect. Notably, the expression of carotenoid synthesis-related genes except AL1 was up-regulated. Additionally, the content of β-carotene, lycopene, and astaxanthin demonstrated increases of 10.74%, 5.02%, and 3.22%, respectively. The expression of 5 genes and the synthesis of 91 metabolites were up-regulated, while the expression of 35 genes and the synthesis of 138 metabolites were down-regulated at the concentration range of the inhibitory effect. Meanwhile, the content of β-carotene, lycopene, and astaxanthin decreased by 21.73%, 34.81%, and 35.51%, respectively. In summary, appropriate concentrations of rare earth ions can regulate the synthesis of secondary metabolites by modulating the activities of various enzymes involved in metabolic pathways, thereby exerting the hormesis effect. The findings of this study not only contribute to our comprehension for the mechanism of rare earth elements in organisms but also offer a promising avenue for the utilization of rare earth elements in diverse fields, including agriculture, pharmaceuticals, and healthcare.
Lanthanum/pharmacology*
;
Rhodotorula/genetics*
;
Carotenoids/metabolism*
;
Hormesis/drug effects*
;
Fermentation
;
Multiomics
2.Directed evolution of tyrosine ammonia-lyase to improve the production of p-coumaric acid in Escherichia coli.
Yanan HUO ; Fengli WU ; Guotian SONG ; Ran TU ; Wujiu CHEN ; Erbing HUA ; Qinhong WANG
Chinese Journal of Biotechnology 2020;36(11):2367-2376
p-coumaric acid is an important natural phenolic compound with a variety of pharmacological activities, and also a precursor for the biosynthesis of many natural compounds. It is widely used in foods, cosmetics and medicines. Compared with the chemical synthesis and plant extraction, microbial production of p-coumaric acid has many advantages, such as energy saving and emission reduction. However, the yield of p-coumaric acid by microbial synthesis is too low to meet the requirements of large-scale industrial production. Here, to further improve p-coumaric acid production, the directed evolution of tyrosine ammonia lyase (TAL) encoded by Rhodotorula glutinis tal gene was conducted, and a high-throughput screening method was established to screen the mutant library for improve the property of TAL. A mutant with a doubled TAL catalytic activity was screened from about 10,000 colonies of the mutant library. There were three mutational amino acid sites in this TAL, namely S9Y, A11N, and E518A. It was further verified by a single point saturation mutation. When S9 was mutated to Y, I or N, or A11 was mutated to N, T or Y, the catalytic activity of TAL increased by more than 1-fold. Through combinatorial mutation of three types of mutations at the S9 and A11, the TAL catalytic activity of S9Y/A11N or S9N/A11Y mutants were significantly higher than that of other mutants. Then, the plasmid containing S9N/A11Y mutant was transformed into CP032, a tyrosine-producing E. coli strain. The engineered strain produced 394.2 mg/L p-coumaric acid, which is 2.2-fold higher than that of the control strain, via shake flask fermentation at 48 h. This work provides a new insight for the biosynthesis study of p-coumaric acid.
Ammonia-Lyases/genetics*
;
Escherichia coli/genetics*
;
Propionates
;
Rhodotorula
;
Tyrosine/genetics*

Result Analysis
Print
Save
E-mail