1.Transposable elements in health and disease: Molecular basis and clinical implications.
Chinese Medical Journal 2025;138(18):2220-2233
Transposable elements (TEs), once considered genomic "junk", are now recognized as critical regulators of genome function and human disease. These mobile genetic elements-including retrotransposons (long interspersed nuclear elements [LINE-1], Alu, short interspersed nuclear element-variable numbers of tandem repeats-Alu [SVA], and human endogenous retrovirus [HERV]) and DNA transposons-are tightly regulated by multilayered mechanisms that operate from transcription through to genomic integration. Although typically silenced in somatic cells, TEs are transiently activated during key developmental stages-such as zygotic genome activation and cell fate determination-where they influence chromatin architecture, transcriptional networks, RNA processing, and innate immune responses. Dysregulation of TEs, however, can lead to genomic instability, chronic inflammation, and various pathologies, including cancer, neurodegeneration, and aging. Paradoxically, their reactivation also presents new opportunities for clinical applications, particularly as diagnostic biomarkers and therapeutic targets. Understanding the dual role of TEs-and balancing their contributions to normal development and disease-is essential for advancing novel therapies and precision medicine.
Humans
;
DNA Transposable Elements/physiology*
;
Animals
;
Long Interspersed Nucleotide Elements/genetics*
;
Neoplasms/genetics*
;
Genomic Instability/genetics*
;
Endogenous Retroviruses/genetics*
2.Regulation of porcine endogenous retrovirus by dual LTR1+2 (Long Terminal Region) miRNA in primary porcine kidney cells
Hee Chun CHUNG ; Van Giap NGUYEN ; Hyung Joon MOON ; Yong Ho PARK ; Bong Kyun PARK
Journal of Veterinary Science 2019;20(5):e50-
Porcine endogenous retroviruses (PERVs) integrate into germline DNA as proviral genome that enables vertical transmission from parents to their offspring. The provirus usually survives as part of the host genome rather than as an infectious agent, but may become pathogenic if it crosses species barriers. Therefore, replication-competent PERV should be controlled through selective breeding or knockout technologies. Two microRNAs (miRNAs), dual LTR1 and LTR2, were selected to inhibit the expression of PERV in primary porcine kidney cells. The inhibition efficiency of the miRNAs was compared based on their inhibition of different PERV regions, specifically long terminal repeats (LTRs), gag, pol, and env. Gene expression was quantified using real-time polymerase chain reaction and the C-type reverse transcriptase (RT) activity was determined. The messenger RNA (mRNA) expression of the PERV LTR and env regions was determined in HeLa cells co-cultured with primary porcine kidney cells. The mRNA expression of the LTR, gag, pol, and env regions of PERV was dramatically inhibited by dual miRNA from 24 to 144 h after transfection, with the highest inhibition observed for the LTR and pol regions at 120 h. Additionally, the RT activity of PERV in the co-culture experiment of porcine and human cells was reduced by 84.4% at the sixth passage. The dual LTR 1+2 miRNA efficiently silences PERV in primary porcine kidney cells.
Coculture Techniques
;
DNA
;
Endogenous Retroviruses
;
Gene Expression
;
Genome
;
HeLa Cells
;
Humans
;
Kidney
;
MicroRNAs
;
Parents
;
Proviruses
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
RNA-Directed DNA Polymerase
;
Selective Breeding
;
Terminal Repeat Sequences
;
Transfection
3.Advances in application of Jurkat cell model in research on infectious diseases.
Jing-Lun CHEN ; Guang-Min NONG
Chinese Journal of Contemporary Pediatrics 2018;20(3):236-242
Infectious diseases can be caused by multiple pathogens, which can produce specific immune response in human body. The immune response produced by T cells is cellular immunity, which plays an important role in the anti-infection process of human body, and can participate in immunological protection and cause immunopathology. The outcome of various infectious diseases is closely related to cellular immune function, especially the function of T cells. Jurkat cells belong to the human acute T lymphocyte leukemia cell line. Jurkat cell model can simulate the function T lymphocytes, so it is widely used in the in vitro studies of T cell signal transduction, cytokines, and receptor expression, and can provide reference and guidance for the treatment of various infectious diseases and the research on their pathogenesis. The Jurkat cell model has been widely used in the in vitro studies of viral diseases and atypical pathogens, but parasitic infection studies using the Jurkat cell model are still rare. This article reviews advances in the application of Jurkat cell model in the research on infectious diseases.
Communicable Diseases
;
immunology
;
Deltaretrovirus Infections
;
immunology
;
Enterovirus A, Human
;
Enterovirus Infections
;
immunology
;
Epstein-Barr Virus Infections
;
immunology
;
HIV Infections
;
immunology
;
Humans
;
Jurkat Cells
;
immunology
;
T-Lymphocytes
;
immunology
4.Analysis of swine leukocyte antigen class I gene profiles and porcine endogenous retrovirus viremia level in a transgenic porcine herd inbred for xenotransplantation research
Daria MATCZYŃSKA ; Daniel SYPNIEWSKI ; Sabina GAŁKA ; Dagna SOŁTYSIK ; Tomasz LOCH ; Ewa NOWAK ; Zdzisław SMORĄG ; Ilona BEDNAREK
Journal of Veterinary Science 2018;19(3):384-392
Molecular characterization of swine leukocyte antigen (SLA) genes is important for elucidating the immune responses between swine-donor and human-recipient in xenotransplantation. Examination of associations between alleles of SLA class I genes, type of pig genetic modification, porcine endogenous retrovirus (PERV) viral titer, and PERV subtypes may shed light on the nature of xenograft acceptance or rejection and the safety of xenotransplantation. No significant difference in PERV gag RNA level between transgenic and non-transgenic pigs was noted; likewise, the type of applied transgene had no impact on PERV viremia. SLA-1 gene profile type may correspond with PERV level in blood and thereby influence infectiveness. Screening of pigs should provide selection of animals with low PERV expression and exclusion of specimens with PERV-C in the genome due to possible recombination between A and C subtypes, which may lead to autoinfection. Presence of PERV-C integrated in the genome was detected in 31.25% of specimens, but statistically significant increased viremia in specimens with PERV-C was not observed. There is a need for multidirectional molecular characterization (SLA typing, viremia estimation, and PERV subtype screening) of animals intended for xenotransplantation research in the interest of xeno-recipient safety.
Alleles
;
Animals
;
Endogenous Retroviruses
;
Genes, MHC Class I
;
Genes, MHC Class II
;
Genome
;
Heterografts
;
Leukocytes
;
Mass Screening
;
Recombination, Genetic
;
Retroviridae
;
RNA
;
Swine
;
Transgenes
;
Transplantation, Heterologous
;
Viremia
5.Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis.
Ding HE ; Gong PENGTAO ; Yang JU ; Li JIANHUA ; Li HE ; Zhang GUOCAI ; Zhang XICHEN
The Korean Journal of Parasitology 2017;55(2):121-128
Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected (V⁺) and uninfected (V⁻) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V⁺ compared with V⁻ isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V⁺ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V⁺ and V⁻ isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.
Glucose-6-Phosphate Isomerase
;
Glycogen Phosphorylase
;
Heat-Shock Proteins
;
Host-Parasite Interactions
;
Malate Dehydrogenase
;
Metabolism
;
Polymerase Chain Reaction
;
Proteome
;
Reticuloendotheliosis virus
;
Ribosomal Proteins
;
RNA, Double-Stranded
;
RNA, Messenger
;
Trichomonas vaginalis*
;
Trichomonas*
;
Triose-Phosphate Isomerase
;
Virulence
6.Screening of drug resistent gene by cyclical packaging rescue of hepatocellular carcinoma retroviral cDNA libraries.
Wenyan DAI ; Ruiyu ZHU ; Jian JIN
Chinese Journal of Biotechnology 2016;32(2):204-211
Multidrug resistant genes are highly expressed in hepatocellular carcinoma that seriousty affects the effect of chemotherapy. Screening of resistant genes from HCC cells and studying its mechanism of drug resistance will be helpful to improve the effecacy of chemotherapy for hepatocellular carcinoma. Here we described an alternative method called cyclical packaging rescue (CPR). First we constructed a retrovirus cDNA library of hepatoma cells and used it to infect fibroblasts. Then we added drugs to screen survival cells. The survival cells, stably integrated helper-free retroviral libraries, were recovered rapidly after transfection with plasmids expressing retroviral gag-pol and env genes. Through this method, retroviral RNAs were directly repackaged into new infectious virions. Recovered retroviral supernatant was then used to reinfect fresh target cells. When performed in concert with selection using functional assays, cDNAs regulating functional responses could be identified by enrichment through multiple rounds of retroviral library recovery and retransmission. Using CPR, we obtained several cDNAs. After a preliminary detection, we found Ribosomal protein S11 (RPS11), Ribosomal protein L6 (RPL6), Ribosomal protein L11 (RPL11), Ribosomal protein L24 (RPL24) possibly had drug resistant function.
Carcinoma, Hepatocellular
;
genetics
;
pathology
;
Cell Line, Tumor
;
DNA, Complementary
;
Drug Resistance, Neoplasm
;
genetics
;
Gene Library
;
Genetic Vectors
;
Humans
;
Liver Neoplasms
;
genetics
;
pathology
;
Plasmids
;
Retroviridae
;
Ribosomal Proteins
;
genetics
;
metabolism
;
Transfection
7.HTLV-1 bZIP Factor (HBZ): Roles in HTLV-1 Oncogenesis.
Wencai WU ; Wenzhao CHENG ; Mengyun CHEN ; Lingling XU ; Tiejun ZHAO
Chinese Journal of Virology 2016;32(2):235-242
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus demonstrated to be associated with human disease. Infection by the HTLV-1 can cause T-cell leukemia (ATL) in adults. HTLV-1 bZIP factor (HBZ) is a viral protein encoded by the minus strand of the HTLV-1 provirus. Among the regulatory and accessory genes of HTLV-1, HBZ is the only gene that remains intact and which is expressed consistently in all patients with ATL. Moreover, HBZ has a critical role in the leukemogenesis of ATL. Here, we review the function of HBZ in the oncogenesis of HTLV-1 and its molecular mechanism of action.
Animals
;
Basic-Leucine Zipper Transcription Factors
;
genetics
;
metabolism
;
Carcinogenesis
;
HTLV-I Infections
;
pathology
;
virology
;
Human T-lymphotropic virus 1
;
genetics
;
metabolism
;
Humans
;
Leukemia, T-Cell
;
pathology
;
virology
;
Retroviridae Proteins
;
genetics
;
metabolism
8.Cross-species Transmission of Avian Leukosis Virus Subgroup J.
Yanwei SHEN ; Menglian HE ; Ji ZHANG ; Manda ZHAO ; Guihua WANG ; Ziqiang CHENG
Chinese Journal of Virology 2016;32(1):46-55
Avian leukosis virus subgroup J (ALV-J) is an avian retrovirus that can induce myelocytomas. A high-frequency mutation in gene envelope endows ALV-J with the potential for cross-species transmission. We wished to ascertain if the ALV-J can spread across species under selection pressure in susceptible and resistant hosts. First, we inoculated (in turn) two susceptible host birds (specific pathogen-free (SPF) chickens and turkeys). Then, we inoculated three resistant hosts (pheasants, quails and ducks) to detect the viral shedding, pathologic changes, and genetic evolution of different isolates. We found that pheasants and quails were infected under the selective pressure that accumulates stepwise in different hosts, and that ducks were not infected. Infection rates for SPF chickens and turkeys were 100% (16/16), whereas those for pheasants and quails were 37.5% (6/16) and 11.1% (3/27). Infected hosts showed immune tolerance, and inflammation and tissue damage could be seen in the liver, spleen, kidneys and cardiovascular system. Non-synonymous mutation and synonymous ratio (NS/S) analyses revealed the NS/S in hypervariable region (hr) 2 of pheasants and quails was 2.5. That finding suggested that mutation of isolates in pheasants and quails was induced by selective pressure from the resistant host, and that the hr2 region is a critical domain in cross-species transmission of ALV-J. Sequencing showed that ALV-J isolates from turkeys, pheasants and quails had moved away from the original virus, and were closer to the ALV-J prototype strain HPRS-103. However, the HPRS-103 strain cannot infect pheasants and quails, so further studies are needed.
Amino Acid Sequence
;
Animals
;
Avian Leukosis
;
transmission
;
virology
;
Avian Leukosis Virus
;
classification
;
genetics
;
physiology
;
Chickens
;
Ducks
;
virology
;
Galliformes
;
virology
;
Host Specificity
;
Molecular Sequence Data
;
Poultry Diseases
;
transmission
;
virology
;
Quail
;
virology
;
Sequence Alignment
;
Turkeys
;
virology
;
Viral Envelope Proteins
;
chemistry
;
genetics
;
metabolism
9.Genomic diversity of the Avian leukosis virus subgroup J gp85 gene in different organs of an infected chicken.
Fanfeng MENG ; Xue LI ; Jian FANG ; Yalong GAO ; Lilong ZHU ; Guiju XING ; Fu TIAN ; Yali GAO ; Xuan DONG ; Shuang CHANG ; Peng ZHAO ; Zhizhong CUI ; Zhihao LIU
Journal of Veterinary Science 2016;17(4):497-503
The genomic diversity of Avian leukosis virus subgroup J (ALV-J) was investigated in an experimentally infected chicken. ALV-J variants in tissues from four different organs of the same bird were re-isolated in DF-1 cells, and their gp85 gene was amplified and cloned. Ten clones from each organ were sequenced and compared with the original inoculum strain, NX0101. The minimum homology of each organ ranged from 96.7 to 97.6%, and the lowest homology between organs was only 94.9%, which was much lower than the 99.1% homology of inoculum NX0101, indicating high diversity of ALV-J, even within the same bird. The gp85 mutations from the left kidney, which contained tumors, and the right kidney, which was tumor-free, had higher non-synonymous to synonymous mutation ratios than those in the tumor-bearing liver and lungs. Additionally, the mutational sites of gp85 gene in the kidney were similar, and they differed from those in the liver and lung, implying that organ- or tissue-specific selective pressure had a greater influence on the evolution of ALV-J diversity. These results suggest that more ALV-J clones from different organs and tissues should be sequenced and compared to better understand viral evolution and molecular epidemiology in the field.
Animals
;
Avian Leukosis Virus*
;
Avian Leukosis*
;
Birds
;
Chickens*
;
Clone Cells
;
Kidney
;
Liver
;
Lung
;
Molecular Epidemiology
;
Silent Mutation
10.Development and evaluation of an immunochromatographic assay using a gp51 monoclonal antibody for the detection of antibodies against the bovine leukemia virus.
Eun Ju KIM ; Kwang Myun CHEONG ; Ha Kyung JOUNG ; Bo Hye KIM ; Jae Young SONG ; In Soo CHO ; Kyoung Ki LEE ; Yeun Kyung SHIN
Journal of Veterinary Science 2016;17(4):479-487
Infection of cattle with bovine leukemia virus (BLV) has been observed and reported worldwide, including in Korea. The onsite identification of infected cattle would help decreasing and eradicating BLV infections on farms. Here, we present a new immunochromatographic assay that employs monoclonal antibodies (MAbs) for the detection of antibodies against BLV in the field. BLV envelope glycoprotein (gp)51 was expressed in E. coli, and MAbs against recombinant BLV gp51 were generated for the development of an immunochromatographic assay to detect BLV antibodies in cattle. The sensitivity and specificity of the assay were determined by comparing these results with those obtained from a standard enzyme linked immunosorbent assay (ELISA). A total of 160 bovine sera were used to evaluate the new immunochromatographic assay. Using ELISA as a reference standard, the relative specificity and sensitivity of this assay were determined to be 94.7% and 98%, respectively. Because of its high sensitivity and specificity, this BLV antibody detection assay would be suitable for the onsite identification of BLV infection in the field.
Agriculture
;
Animals
;
Antibodies*
;
Antibodies, Monoclonal
;
Cattle
;
Deltaretrovirus Antibodies
;
Deltaretrovirus Infections
;
Enzootic Bovine Leukosis*
;
Enzyme-Linked Immunosorbent Assay
;
Glycoproteins
;
Immunochromatography*
;
Korea
;
Leukemia Virus, Bovine*
;
Sensitivity and Specificity

Result Analysis
Print
Save
E-mail