1.Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model.
Xing TU ; Zixing ZOU ; Jiahui LI ; Simiao ZENG ; Zhengchao LUO ; Gen LI ; Yuanxu GAO ; Kang ZHANG
Chinese Medical Journal 2025;138(2):172-184
BACKGROUND:
Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited. Notably, artificial intelligence (AI) technologies have significantly advanced drug discovery. This study aimed to discover RIPK3 inhibitor with AI assistance.
METHODS:
An acute ocular hypertension model was used to simulate pathological ocular hypertension in vivo . We employed a series of AI methods, including large language and graph neural network models, to identify the target compounds of RIPK3. Subsequently, these target candidates were validated using molecular simulations (molecular docking, absorption, distribution, metabolism, excretion, and toxicity [ADMET] prediction, and molecular dynamics simulations) and biological experiments (Western blotting and fluorescence staining) in vitro and in vivo .
RESULTS:
AI-driven drug screening techniques have the potential to greatly accelerate drug development. A compound called HG9-91-01, identified using AI methods, exerted neuroprotective effects in acute glaucoma. Our research indicates that all five candidates recommended by AI were able to protect the morphological integrity of RGC cells when exposed to hypoxia and glucose deficiency, and HG9-91-01 showed a higher cell survival rate compared to the other candidates. Furthermore, HG9-91-01 was found to protect the retinal structure and reduce the loss of retinal layers in an acute glaucoma model. It was also observed that the neuroprotective effects of HG9-91-01 were highly correlated with the inhibition of PANoptosis (apoptosis, pyroptosis, and necroptosis). Finally, we found that HG9-91-01 can regulate key proteins related to PANoptosis, indicating that this compound exerts neuroprotective effects in the retina by inhibiting the expression of proteins related to apoptosis, pyroptosis, and necroptosis.
CONCLUSION
AI-enabled drug discovery revealed that HG9-91-01 could serve as a potential treatment for acute glaucoma.
Animals
;
Glaucoma/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Mice
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Artificial Intelligence
;
Retinal Ganglion Cells/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation
;
Mice, Inbred C57BL
;
Male
2.HOCPCA Exerts Neuroprotection on Retinal Ganglion Cells by Binding to CaMKIIα and Modulating Oxidative Stress and Neuroinflammation in Experimental Glaucoma.
Panpan LI ; Xin SHI ; Hanhan LIU ; Yuan FENG ; Xiaosha WANG ; Marc HERB ; Haichao JI ; Stefan WAGNER ; Johannes VOGT ; Verena PROKOSCH
Neuroscience Bulletin 2025;41(8):1329-1346
Neuronal injury in glaucoma persists despite effective intraocular pressure (IOP) control, necessitating neuroprotective strategies for retinal ganglion cells (RGCs). In this study, we investigated the neuroprotective role of the γ-hydroxybutyrate analog HOCPCA in a glaucoma model, focusing on its effects on CaMKII signaling, oxidative stress, and neuroinflammatory responses. Retinal tissue from high IOP animal models was analyzed via proteomics. In vitro mouse retinal explants were subjected to elevated pressure and oxidative stress, followed by HOCPCA treatment. HOCPCA significantly mitigated the RGC loss induced by oxidative stress and elevated pressure, preserving neuronal function. It restored CaMKIIα and β levels, preserving RGC integrity, while also modulating oxidative stress and neuroinflammatory responses. These findings suggest that HOCPCA, through its interaction with CaMKII, holds promise as a neuroprotective therapy for glaucoma.
Animals
;
Retinal Ganglion Cells/metabolism*
;
Glaucoma/pathology*
;
Oxidative Stress/drug effects*
;
Neuroprotective Agents/pharmacology*
;
Mice
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Neuroinflammatory Diseases/drug therapy*
;
Neuroprotection/drug effects*
;
Male
;
Intraocular Pressure/drug effects*
3.GABAergic Retinal Ganglion Cells Projecting to the Superior Colliculus Mediate the Looming-Evoked Flight Response.
Man YUAN ; Gao TAN ; Danrui CAI ; Xue LUO ; Kejiong SHEN ; Qinqin DENG ; Xinlan LEI ; Wen-Bo ZENG ; Min-Hua LUO ; Lu HUANG ; Chaoran REN ; Yin SHEN
Neuroscience Bulletin 2024;40(12):1886-1900
The looming stimulus-evoked flight response to approaching predators is a defensive behavior in most animals. However, how looming stimuli are detected in the retina and transmitted to the brain remains unclear. Here, we report that a group of GABAergic retinal ganglion cells (RGCs) projecting to the superior colliculus (SC) transmit looming signals from the retina to the brain, mediating the looming-evoked flight behavior by releasing GABA. GAD2-Cre and vGAT-Cre transgenic mice were used in combination with Cre-activated anterograde or retrograde tracer viruses to map the inputs to specific GABAergic RGC circuits. Optogenetic technology was used to assess the function of SC-projecting GABAergic RGCs (scpgRGCs) in the SC. FDIO-DTA (Flp-dependent Double-Floxed Inverted Open reading frame-Diphtheria toxin) combined with the FLP (Florfenicol, Lincomycin & Prednisolone) approach was used to ablate or silence scpgRGCs. In the mouse retina, GABAergic RGCs project to different brain areas, including the SC. ScpgRGCs are monosynaptically connected to parvalbumin-positive SC neurons known to be required for the looming-evoked flight response. Optogenetic activation of scpgRGCs triggers GABA-mediated inhibition in SC neurons. Ablation or silencing of scpgRGCs compromises looming-evoked flight responses without affecting image-forming functions. Our study reveals that scpgRGCs control the looming-evoked flight response by regulating SC neurons via GABA, providing novel insight into the regulation of innate defensive behaviors.
Animals
;
Superior Colliculi/physiology*
;
Retinal Ganglion Cells/physiology*
;
GABAergic Neurons/physiology*
;
Mice, Transgenic
;
Mice
;
Optogenetics
;
Visual Pathways/physiology*
;
Mice, Inbred C57BL
;
Photic Stimulation/methods*
;
gamma-Aminobutyric Acid/metabolism*
;
Male
4.P2X7/P2X4 Receptors Mediate Proliferation and Migration of Retinal Microglia in Experimental Glaucoma in Mice.
Meng-Xi XU ; Guo-Li ZHAO ; Xin HU ; Han ZHOU ; Shu-Ying LI ; Fang LI ; Yanying MIAO ; Bo LEI ; Zhongfeng WANG
Neuroscience Bulletin 2022;38(8):901-915
Microglia are involved in the inflammatory response and retinal ganglion cell damage in glaucoma. Here, we investigated how microglia proliferate and migrate in a mouse model of chronic ocular hypertension (COH). In COH retinas, the microglial proliferation that occurred was inhibited by the P2X7 receptor (P2X7R) blocker BBG or P2X7R knockout, but not by the P2X4R blocker 5-BDBD. Treatment of primary cultured microglia with BzATP, a P2X7R agonist, mimicked the effects of cell proliferation and migration in COH retinas through the intracellular MEK/ERK signaling pathway. Transwell migration assays showed that the P2X4R agonist CTP induced microglial migration, which was completely blocked by 5-BDBD. In vivo and in vitro experiments demonstrated that ATP, released from activated Müller cells through connexin43 hemichannels, acted on P2X7R to induce microglial proliferation, and acted on P2X4R/P2X7R (mainly P2X4R) to induce microglial migration. Our results suggest that inhibiting the interaction of Müller cells and microglia may attenuate microglial proliferation and migration in glaucoma.
Adenosine Triphosphate/pharmacology*
;
Animals
;
Cell Proliferation
;
Glaucoma/metabolism*
;
Mice
;
Microglia/metabolism*
;
Receptors, Purinergic P2X4/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Retinal Ganglion Cells/metabolism*
5.Protective effect of Epothilone D against traumatic optic nerve injury in rats.
Peng Fei WANG ; Sheng Ping LUO ; Chen SHEN ; Zhe Hao YU ; Zu Qing NIE ; Zhi Wei LI ; Jie WEN ; Meng LI ; Xia CAO
Journal of Southern Medical University 2022;42(4):575-583
OBJECTIVE:
To investigate the therapeutic effect of Epothilone D on traumatic optic neuropathy (TON) in rats.
METHODS:
Forty-two SD rats were randomized to receive intraperitoneal injection of 1.0 mg/kg Epothilone D or DMSO (control) every 3 days until day 28, and rat models of TON were established on the second day after the first administration. On days 3, 7, and 28, examination of flash visual evoked potentials (FVEP), immunofluorescence staining and Western blotting were performed to examine the visual pathway features, number of retinal ganglion cells (RGCs), GAP43 expression level in damaged axons, and changes of Tau and pTau-396/404 in the retina and optic nerve.
RESULTS:
In Epothilone D treatment group, RGC loss rate was significantly decreased by 19.12% (P=0.032) on day 3 and by 22.67% (P=0.042) on day 28 as compared with the rats in the control group, but FVEP examination failed to show physiological improvement in the visual pathway on day 28 in terms of the relative latency of N2 wave (P=0.236) and relative amplitude attenuation of P2-N2 wave (P=0.441). The total Tau content in the retina of the treatment group was significantly increased compared with that in the control group on day 3 (P < 0.001), showing a consistent change with ptau-396/404 level. In the optic nerve axons, the total Tau level in the treatment group was significantly lower than that in the control group on day 7 (P=0.002), but the changes of the total Tau and pTau-396/404 level did not show an obvious correlation. Epothilone D induced persistent expression of GAP43 in the damaged axons, detectable even on day 28 of the experiment.
CONCLUSION
Epothilone D treatment can protect against TON in rats by promoting the survival of injured RGCs, enhancing Tau content in the surviving RGCs, reducing Tau accumulation in injured axons, and stimulating sustained regeneration of axons.
Animals
;
Disease Models, Animal
;
Epothilones
;
Evoked Potentials, Visual
;
Nerve Regeneration/physiology*
;
Optic Nerve Injuries/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Retinal Ganglion Cells/physiology*
6.G protein-coupled receptor 17 is involved in CoCl-induced hypoxic injury in RGC-5 cells.
Kana LIN ; Meili LIN ; Yingfen GU ; Shunguo ZHANG ; Shiying HUANG
Journal of Zhejiang University. Medical sciences 2018;47(5):487-492
OBJECTIVE:
To investigate the effect of G protein-coupled receptor 17 (GPR17) on hypoxia injury in retinal ganglion cells .
METHODS:
CoCl (400 μmol/L) was used to induce hypoxic injury in RGC-5 cells. The expression of GPR17 and the effect of GPR17 ligands were investigated, and the role of GPR17 in hypoxia injury was further studied by transfection of RGC-5 cells with GPR17 small interfering RNA (siRNA). The cell viability was determined by MTT and the cell apoptosis rate was detected by flow cytometry analysis. The expression of GPR17 mRNA was determined with RT-PCR.
RESULTS:
mRNA expressions of GPR17 in RGC-5 cells with and without CoCl treatment were 0.36±0.05 and 0.26±0.08(<0.01). Compared with hypoxia without any treatment, pretreatment with GPR17 agonists (LTD, UDP, UDP-G) significantly reduced cell viability (the survival rates of cells decreased by 29.6%, 31.8% and 33.9%, all <0.01), while the effect of GPR17 antagonist (cangrelor) was the opposite (the survival rates of cells increased by 33.2%, <0.01). Transfection with GPR17 SiRNA inhibited hypoxia-induced up-expression of GPR17 mRNA (<0.01)and reduced cell apoptosis[rates of cell apoptosis were(39.73±2.06)%,(42.50±3.64)% and (24.98±2.16)% for blank control, NC siRNA and GPR17 siRNA groups, <0.01].
CONCLUSIONS
GPR17 may mediate hypoxia injury in RGC-5 cells, while the knockdown of GPR17 can reduce the hypoxia injury.
Apoptosis
;
Cell Hypoxia
;
genetics
;
Cell Line
;
Cell Survival
;
Cobalt
;
Gene Expression Regulation
;
drug effects
;
Gene Knockdown Techniques
;
Humans
;
Hypoxia
;
chemically induced
;
genetics
;
Receptors, G-Protein-Coupled
;
genetics
;
metabolism
;
Retinal Ganglion Cells
;
drug effects
7.Collapsin Response Mediator Protein-2-induced Retinal Ischemic Injury in a Novel Mice Model of Ocular Ischemia Syndrome.
Yu WANG ; Xiao-Lei WANG ; Guo-Li XIE ; Hong-Yang LI ; Yan-Ling WANG
Chinese Medical Journal 2017;130(11):1342-1351
BACKGROUNDCollapsin response mediator protein-2 (CRMP2) has been shown to be involved in ischemia/hypoxia (IH) injury. We determined whether CRMP2 modulates ischemic injury in the retinal of Ocular ischemic syndrome (OIS). This study was to explore the molecular mechanisms underlying OIS in a novel mice model.
METHODSExperiments were performed on adult male C57/BL6 mice that received bilateral internal carotid arteries ligation for 1, 2, or 4 weeks. The mice received injection of calpeptin group before occlusion for 4 weeks or not. The expression of CRMP2 in the retinal was examined by western blotting (WB) analysis and immunohistochemical analysis (IHC). The effects of ischemic injury on retinal were evaluated by fundus examination, fundus fluorescein angiography, electroretinogram, cell counting of retinal ganglion cell (RGC), and measurement of the thickness of the retina.
RESULTSThe veins dilated after chronic ischemia. In the electroretinography, the amplitudes of a- and b-waves kept diminishing in an ischemia time-dependent manner. Moreover, the tail vein-retinal circulation time prolonged in the 1- and 2-week group. In comparison, thickness of the retina decreased gradually with the ischemia time elapsed. WB analysis showed the CRMP2 and p-CRMP2 levels decreased in the 2- and 4-week groups. The results of IHC analysis were compatible with our results of WB. The loss of RGCs, decrease of the total reaction time and reduction of CRMP2 was alleviated by intravitreal injection of calpeptin.
CONCLUSIONSThese results revealed that bilateral ligation of the internal carotid artery causes retinal ischemia in mice. Moreover, CRMP2 might play a pivotal role during the ischemic injury in the retina and inhibit the cleavage of CRMP2 can ameliorate the IH injury.
Animals ; Disease Models, Animal ; Electroretinography ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Ischemia ; genetics ; metabolism ; pathology ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins ; genetics ; metabolism ; Retinal Diseases ; genetics ; metabolism ; pathology ; Retinal Ganglion Cells ; metabolism ; pathology
8.Inhibition of calpain on oxygen glucose deprivation-induced RGC-5 necroptosis.
Shuang CHEN ; Jie YAN ; Hai-Xiao DENG ; Ling-Ling LONG ; Yong-Jun HU ; Mi WANG ; Lei SHANG ; Dan CHEN ; Ju-Fang HUANG ; Kun XIONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(5):639-645
The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5 (RGC-5) necroptosis following oxygen glucose deprivation (OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. The calpain expression was detected by Western blotting and immunofluorescence staining. The calpain activity was tested by activity detection kit. Flow cytometry was used to detect the effect of calpain on RGC-5 necroptosis following OGD with or without N-acetyl-leucyl-leucyl-norleucinal (ALLN) pre-treatment. Western blot was used to detect the protein level of truncated apoptosis inducing factor (tAIF) in RGC-5 cells following OGD. The results showed that there was an up-regulation of the calpain expression and activity following OGD. Upon adding ALLN, the calpain activity was inhibited and tAIF was reduced following OGD along with the decreased number of RGC-5 necroptosis. In conclusion, calpain was involved in OGD-induced RGC-5 necroptosis with the increased expression of its downstream molecule tAIF.
Animals
;
Apoptosis Inducing Factor
;
biosynthesis
;
genetics
;
Calpain
;
biosynthesis
;
genetics
;
Gene Expression Regulation
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
Leupeptins
;
administration & dosage
;
Mice
;
Oxygen
;
metabolism
;
Retinal Ganglion Cells
;
metabolism
;
pathology
;
Retinal Necrosis Syndrome, Acute
;
genetics
;
pathology
9.The Neuroprotective Effect of Maltol against Oxidative Stress on Rat Retinal Neuronal Cells.
Yookyung SONG ; Samin HONG ; Yoko IIZUKA ; Chan Yun KIM ; Gong Je SEONG
Korean Journal of Ophthalmology 2015;29(1):58-65
PURPOSE: Maltol (3-hydroxy-2-methyl-4-pyrone), formed by the thermal degradation of starch, is found in coffee, caramelized foods, and Korean ginseng root. This study investigated whether maltol could rescue neuroretinal cells from oxidative injury in vitro. METHODS: R28 cells, which are rat embryonic precursor neuroretinal cells, were exposed to hydrogen peroxide (H2O2, 0.0 to 1.5 mM) as an oxidative stress with or without maltol (0.0 to 1.0 mM). Cell viability was monitored with the lactate dehydrogenase assay and apoptosis was examined by the terminal deoxynucleotide transferase-mediated terminal uridine deoxynucleotidyl transferase nick end-labeling (TUNEL) method. To investigate the neuroprotective mechanism of maltol, the expression and phosphorylation of nuclear factor-kappa B (NF-kappaB), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were evaluated by Western immunoblot analysis. RESULTS: R28 cells exposed to H2O2 were found to have decreased viability in a dose- and time-dependent manner. However, H2O2-induced cytotoxicity was decreased with the addition of maltol. When R28 cells were exposed to 1.0 mM H2O2 for 24 hours, the cytotoxicity was 60.69 ± 5.71%. However, the cytotoxicity was reduced in the presence of 1.0 mM maltol. This H2O2-induced cytotoxicity caused apoptosis of R28 cells, characterized by DNA fragmentation. Apoptosis of oxidatively-stressed R28 cells with 1.0 mM H2O2 was decreased with 1.0 mM maltol, as determined by the TUNEL method. Western blot analysis showed that treatment with maltol reduced phosphorylation of NF-kappaB, ERK, and JNK, but not p38. The neuroprotective effects of maltol seemed to be related to attenuated expression of NF-kappaB, ERK, and JNK. CONCLUSIONS: Maltol not only increased cell viability but also attenuated DNA fragmentation. The results obtained here show that maltol has neuroprotective effects against hypoxia-induced neuroretinal cell damage in R28 cells, and its effects may act through the NF-kappaB and mitogen-activated protein kinase signaling pathways.
Animals
;
*Apoptosis
;
Blotting, Western
;
Cell Survival
;
Cells, Cultured
;
Disease Models, Animal
;
Flavoring Agents/pharmacology
;
In Situ Nick-End Labeling
;
Oxidative Stress/*drug effects
;
Pyrones/*pharmacology
;
Rats
;
Retinal Ganglion Cells/drug effects/metabolism/*pathology
10.Minocycline protects retinal ganglion cells after optic nerve crush injury in mice by delaying autophagy and upregulating nuclear factor-κB2.
Xiaoling JIAO ; Yuan PENG ; Liu YANG ;
Chinese Medical Journal 2014;127(9):1749-1754
BACKGROUNDCurrently, no medicine is available that can prevent or treat neural damage associated with optic nerve injury. Minocycline is recently reported to have a neuroprotective function. The aims of this study were to exarmine the neuroprotective effect of minocycline on retinal ganglion cells (RGCs) and determine its underlying mechanisms, using a mouse model of optic nerve crush (ONC).
METHODSONC was performed in the left eye of adult male mice, and the mice were randomly divided into minocycline-treated group and saline-treated control group. The mice without receiving ONC injury were used as positive controls. RGC densities were assessed in retinal whole mounts with immunofluorescence labeling of βIII-tubulin. Transmission electron microscopy was used to detect RGC morphologies, and Western blotting and real-time PCR were applied to investigate the expression of autophagy markers LC3-I, LC3-II, and transcriptional factors nuclear factor-κB1 (NF-κB1), NF-κB2.
RESULTSIn the early stage after ONC (at Days 4 and 7), the density of RGCs in the minocycline-treated group was higher than that of the saline-treated group. Electron micrographs showed that minocycline prevented nuclei and mitochondria injuries at Day 4. Western blotting analysis demonstrated that the conversion of LC3-I to LC3-II was reduced in the minocycline-treated group at Days 4 and 7, which meant autophagy process was inhibited by minocycline. In addition, the gene expression of NF-κB2 was upregulated by minocycline at Day 4.
CONCLUSIONThe neuroprotective effect of minocycline is generated in the early stage after ONC in mice, partly through delaying autophagy process and regulating NF-κB2 pathway.
Animals ; Autophagy ; drug effects ; Male ; Mice ; Minocycline ; therapeutic use ; NF-kappa B p52 Subunit ; metabolism ; Optic Nerve Injuries ; drug therapy ; metabolism ; Retinal Ganglion Cells ; drug effects ; metabolism

Result Analysis
Print
Save
E-mail