1.Interpretation of new concepts and approaches in the ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies.
Zemeng LI ; Yanhai MENG ; Lulu LI ; Yanbo ZHANG
Chinese Critical Care Medicine 2023;35(9):919-926
Acute respiratory distress syndrome (ARDS) continues to be one of the most life-threatening conditions for patients in the intensive care unit (ICU). The 2023 European Society of Intensive Care Medicine guidelines on ARDS: definition, phenotyping and respiratory support strategies (2023 Guideline) update the 2017 An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with ARDS (2017 Guideline), including 7 aspects of 3 topics of definitions, phenotyping, and respiratory support strategies [including high flow nasal cannula oxygen (HFNO), non-invasive ventilation (NIV), neuromuscular blocking agents (NMBA), extracorporeal life support (ECLS), positive end-expiratory pressure (PEEP) with recruitment maneuvers (RM), tidal volume (VT), and prone positioning]. 2023 Guideline review and summarize the literature since the publication of the 2017 Guideline, covering ARDS and acute hypoxemic respiratory failure, as well as ARDS caused by novel coronavirus infection. Based on the most recent medical evidence, the 2023 Guideline provide clinicians with new ideas and approaches for nonpharmacologic respiratory support strategies for adults with ARDS. This article provides interpretation of the new concepts, the new approaches, the new recommended grading and new levels of evidence for ARDS in the 2023 Guideline.
Adult
;
Humans
;
COVID-19
;
Respiration, Artificial
;
Positive-Pressure Respiration
;
Respiratory Distress Syndrome/therapy*
;
Noninvasive Ventilation
2.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
3.Prognostic value of the extravascular lung water and pulmonary vascular permeability indices in severe adult respiratory distress syndrome managed with extracorporeal membrane oxygenation.
Jin WEI ; Lei HUANG ; Lei XU ; Xiao-Min HU ; Xin-Jing GAO ; Zhi-Bo LI ; Da-Wei DUAN ; Peng WU ; Yu-Heng LANG ; Wen-Qing GAO ; Ying-Wu LIU ; Meng NING ; Tong LI
Chinese Medical Journal 2020;133(20):2501-2503
4.Physiological Changes During Prone Positioning in COVID-19 Acute Respiratory Distress Syndrome.
Rui Min LEE ; Geak Poh TAN ; Ser Hon PUAH ; Li Min LING ; Chiaw Yee CHOY ; Sanjay H CHOTIRMALL ; John ABISHEGANADEN ; Jee Jian SEE ; Hui Ling TAN ; Yu Lin WONG
Annals of the Academy of Medicine, Singapore 2020;49(7):509-513
Adult
;
Aged
;
Betacoronavirus
;
Coronavirus Infections
;
complications
;
therapy
;
Critical Care
;
Female
;
Humans
;
Length of Stay
;
Male
;
Middle Aged
;
Pandemics
;
Patient Positioning
;
Pneumonia, Viral
;
complications
;
therapy
;
Prone Position
;
Respiratory Distress Syndrome, Adult
;
therapy
;
virology
;
Respiratory Function Tests
;
Retrospective Studies
;
Treatment Outcome
5.A Child of Severe Mycoplasma pneumoniae pneumonia with Multiple Organ Failure Treated with ECMO and CRRT
Woojin HWANG ; Yoonjin LEE ; Eunjee LEE ; Jiwon M LEE ; Hong Ryang KIL ; Jae Hyeon YU ; Eun Hee CHUNG
Pediatric Infection & Vaccine 2019;26(1):71-79
Mycoplasma pneumoniae (MP) is the most common causative agent of community-acquired pneumonia in school-aged children. An 8-year-old boy who had been diagnosed with autism looked severely ill when he presented to our hospital due to dyspnea and lethargy. He had fever and cough 7 days prior to hospitalization. He had signs and symptoms of severe respiratory distress. The percutaneous oxygen saturation was 88% at high oxygen supply. Chest radiography showed diffusely increased opacity with moderate pleural effusion. He was intubated immediately and admitted to the intensive care unit. Under the clinical impression of mycoplasmal pneumonia, intravenous clarithromycin was started. Laboratory findings showed leukocytosis, hepatitis, decreased renal function, and presence of serum MP immunoglobulin (Ig) M (+) IgG (+) and sputum MP polymerase chain reaction (+). On hospital day 2, the patient developed multiple organ failure with acute respiratory distress syndrome (ARDS). Veno-venous extracorporeal membrane oxygenation (ECMO) was performed with continuous renal replacement therapy (CRRT) and was weaned successfully. This is the first reported case of an ARDS due to MP infection complicated by multiple organ failure that was successfully treated with ECMO and CRRT in South Korea.
Autistic Disorder
;
Child
;
Clarithromycin
;
Cough
;
Dyspnea
;
Extracorporeal Membrane Oxygenation
;
Fever
;
Hepatitis
;
Hospitalization
;
Humans
;
Immunoglobulin G
;
Immunoglobulins
;
Intensive Care Units
;
Korea
;
Lethargy
;
Leukocytosis
;
Male
;
Multiple Organ Failure
;
Mycoplasma pneumoniae
;
Mycoplasma
;
Oxygen
;
Pleural Effusion
;
Pneumonia
;
Pneumonia, Mycoplasma
;
Polymerase Chain Reaction
;
Radiography
;
Renal Replacement Therapy
;
Respiratory Distress Syndrome, Adult
;
Sputum
;
Thorax
6.Acute Respiratory Distress Syndrome: Challenge for Diagnosis and Therapy.
Chun PAN ; Ling LIU ; Jian-Feng XIE ; Hai-Bo QIU
Chinese Medical Journal 2018;131(10):1220-1224
ObjectiveAcute respiratory distress syndrome (ARDS) is a devastating clinical syndrome whose diagnosis and therapy are still in question. The aim of this review was to discuss the current challenge for the diagnosis and treatment of ARDS.
Data SourcesData sources were the published articles in English through December 2017 in PubMed using the following key words: "acute respiratory distress syndrome," "definition", "diagnosis," "therapy," "lung protective strategy," "right ventricular dysfunction," and "molecular mechanism."
Study SelectionThe selection of studies focused on both preclinical studies and clinical studies of therapy of ARDS.
ResultsThe incidence of ARDS is still high, and ARDS causes high intensive care units admissions and high mortality. The Berlin Definition proposed in 2012 is still controversial owing to lack of sensitivity and specificity. ARDS is still under recognition and it is associated with high mortality. Lung protective strategies with low tidal volume (VT) and lung recruitment should consider the physiology of ARDS because ARDS presents lung inhomogeneity; the same low VT might increase local stress and strain in some patients with low compliance, and lung recruitment could injure lungs in ARDS patients with low recruitability and hemodynamic instability. Acute cor pulmonale is common in severe ARDS. ARDS itself and some treatments could worsen acute cor pulmonale. Molecular understanding of the pathogenic contributors to ARDS has improved, but the molecular-associated treatments are still under development.
ConclusionsARDS is a devastating clinical syndrome whose incidence and mortality has remained high over the past 50 years. Its definition and treatments are still confronted with challenges, and early recognition and intervention are crucial for improving the outcomes of ARDS. More clinical studies are needed to improve early diagnosis and appropriate therapy.
Animals ; Humans ; Respiration, Artificial ; Respiratory Distress Syndrome, Adult ; diagnosis ; therapy ; Tidal Volume ; physiology
8.Halogen Inhalation-Induced Lung Injury and Acute Respiratory Distress Syndrome.
Ting ZHOU ; Wei-Feng SONG ; You SHANG ; Shang-Long YAO ; Sadis MATALON
Chinese Medical Journal 2018;131(10):1214-1219
ObjectiveExposure to halogens, such as chlorine or bromine, results in environmental and occupational hazard to the lung and other organs. Chlorine is highly toxic by inhalation, leading to dyspnea, hypoxemia, airway obstruction, pneumonitis, pulmonary edema, and acute respiratory distress syndrome (ARDS). Although bromine is less reactive and oxidative than chlorine, inhalation also results in bronchospasm, airway hyperresponsiveness, ARDS, and even death. Both halogens have been shown to damage the systemic circulation and result in cardiac injury as well. There is no specific antidote for these injuries since the mechanisms are largely unknown.
Data SourcesThis review was based on articles published in PubMed databases up to January, 2018, with the following keywords: "chlorine," "bromine," "lung injury," and "ARDS."
Study SelectionThe original articles and reviews including the topics were the primary references.
ResultsBased on animal studies, it is found that inhaled chlorine will form chlorine-derived oxidative products that mediate postexposure toxicity; thus, potential treatments will target the oxidative stress and inflammation induced by chlorine. Antioxidants, cAMP-elevating agents, anti-inflammatory agents, nitric oxide-modulating agents, and high-molecular-weight hyaluronan have shown promising effects in treating acute chlorine injury. Elevated free heme level is involved in acute lung injury caused by bromine inhalation. Hemopexin, a heme-scavenging protein, when administered postexposure, decreases lung injury and improves survival.
ConclusionsAt present, there is an urgent need for additional research to develop specific therapies that target the basic mechanisms by which halogens damage the lungs and systemic organs.
Acute Lung Injury ; chemically induced ; Animals ; Chlorine ; toxicity ; Halogens ; toxicity ; Humans ; Lung ; drug effects ; pathology ; Respiratory Distress Syndrome, Adult ; drug therapy
10.What Can We Apply to Manage Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Acute Respiratory Failure?.
Deog Kyeom KIM ; Jungsil LEE ; Ju Hee PARK ; Kwang Ha YOO
Tuberculosis and Respiratory Diseases 2018;81(2):99-105
Acute exacerbation(s) of chronic obstructive pulmonary disease (AECOPD) tend to be critical and debilitating events leading to poorer outcomes in relation to chronic obstructive pulmonary disease (COPD) treatment modalities, and contribute to a higher and earlier mortality rate in COPD patients. Besides pro-active preventative measures intended to obviate acquisition of AECOPD, early recovery from severe AECOPD is an important issue in determining the long-term prognosis of patients diagnosed with COPD. Updated GOLD guidelines and recently published American Thoracic Society/European Respiratory Society clinical recommendations emphasize the importance of use of pharmacologic treatment including bronchodilators, systemic steroids and/or antibiotics. As a non-pharmacologic strategy to combat the effects of AECOPD, noninvasive ventilation (NIV) is recommended as the treatment of choice as this therapy is thought to be most effective in reducing intubation risk in patients diagnosed with AECOPD with acute respiratory failure. Recently, a few adjunctive modalities, including NIV with helmet and helium-oxygen mixture, have been tried in cases of AECOPD with respiratory failure. As yet, insufficient documentation exists to permit recommendation of this therapy without qualification. Although there are too few findings, as yet, to allow for regular andr routine application of those modalities in AECOPD, there is anecdotal evidence to indicate both mechanical and physiological benefits connected with this therapy. High-flow nasal cannula oxygen therapy is another supportive strategy which serves to improve the symptoms of hypoxic respiratory failure. The therapy also produced improvement in ventilatory variables, and it may be successfully applied in cases of hypercapnic respiratory failure. Extracorporeal carbon dioxide removal has been successfully attempted in cases of adult respiratory distress syndrome, with protective hypercapnic ventilatory strategy. Nowadays, it is reported that it was also effective in reducing intubation in AECOPD with hypercapnic respiratory failure. Despite the apparent need for more supporting evidence, efforts to improve efficacy of NIV have continued unabated. It is anticipated that these efforts will, over time, serve toprogressively decrease the risk of intubation and invasive mechanical ventilation in cases of AECOPD with acute respiratory failure.
Anti-Bacterial Agents
;
Bronchodilator Agents
;
Carbon Dioxide
;
Catheters
;
Head Protective Devices
;
Humans
;
Intubation
;
Mortality
;
Noninvasive Ventilation
;
Oxygen
;
Oxygen Inhalation Therapy
;
Prognosis
;
Pulmonary Disease, Chronic Obstructive*
;
Respiration, Artificial
;
Respiratory Distress Syndrome, Adult
;
Respiratory Insufficiency*
;
Steroids

Result Analysis
Print
Save
E-mail