1.Jasurolignoside from Ilex pubescens exerts a therapeutic effect on acute lung injury in vitro and in vivo by binding to TLR4.
Shan HAN ; Chi Teng VONG ; Jia HE ; Qinqin WANG ; Qiumei FAN ; Siyuan LI ; Jilang LI ; Min LIAO ; Shilin YANG ; Renyikun YUAN ; Hongwei GAO
Chinese Journal of Natural Medicines (English Ed.) 2025;23(9):1058-1068
Acute lung injury (ALI) is a severe disease caused by viral infection that triggers an uncontrolled inflammatory response. This study investigated the capacity of jasurolignoside (JO), a natural compound, to bind to Toll-like receptor 4 (TLR4) and treat ALI. The anti-inflammatory properties of JO were evaluated in vitro through Western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and co-immunoprecipitation. The investigation utilized a lipopolysaccharide (LPS)-induced ALI animal model to examine the therapeutic efficacy and mechanism of JO in vivo. JO attenuated inflammatory symptoms in infected cells and tissues by modulating the NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome and the nuclear factor κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathway. Molecular docking simulations revealed JO binding to TLR4 active sites, confirmed by cellular thermal shift assay. Surface plasmon resonance (SPR) demonstrated direct interaction between JO and TLR4 with a Kd value of 35.1 μmol·L-1. Moreover, JO inhibited tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and IL-6 secretion and reduced leukocyte, neutrophil, lymphocyte, and macrophage infiltration in ALI-affected mice. JO also enhanced lung function and reduced ALI-related mortality. Immunohistochemical staining demonstrated JO's ability to suppress TLR4 expression in ALI-affected mouse lung tissue. This study establishes that JO can bind to TLR4 and effectively treat ALI, indicating its potential as a therapeutic agent for clinical applications.
Toll-Like Receptor 4/chemistry*
;
Animals
;
Acute Lung Injury/chemically induced*
;
Mice
;
Humans
;
Ilex/chemistry*
;
Molecular Docking Simulation
;
Male
;
NF-kappa B/immunology*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
;
RAW 264.7 Cells
;
Disease Models, Animal
2.The ethyl acetate extraction of Pileostegia tomentella (ZLTE) exerts anti-cancer effects on H1299 cells via ROS-induced canonical apoptosis.
Qiu-Mei FAN ; Wen-Tong ZHAO ; Renyikun YUAN ; Qin-Qin WANG ; Li-Feng ZHANG ; Hong-Wei GAO ; Jing LENG ; Shi-Lin YANG
Chinese Journal of Natural Medicines (English Ed.) 2020;18(7):508-516
Lung cancer is the leading cause of cancer death and the most common malignant tumor, the long-term survival of which has stagnated in the past several decades. Pileostegia tomentella Hand. Mazz is a traditional Chinese medicine called "Zhongliuteng" (ZLT) in the pharmacopeia, which has been proved to possess a potent anti-tumor effect on various cancers. In this study, the effects of ZLT N-butanol extraction (ZLTN) and ZLT ethyl acetate extraction (ZLTE) on the viability of non-small cell lung cancer cell (NSCLC) lines H1299 and A549 were evaluated. Here, we firstly reported that ZLTE significantly inhibited H1299 cells growth without affecting the release of lactate dehydrogenase (LDH). In addition, ZLTE induced caspase-dependent apoptosis in a concentration-dependent manner and increased the expression cleaved-PARP and decreased pro-caspase-3, pro-caspase-7, pro-caspase-8, and pro-caspase-9. Moreover, ZLTE increased the level of cellular reactive oxygen species (ROS) in H1299 cells to lead to apoptosis, which was reversed by N-acetyl-cysteine (NAC). Taken together, our results revealed that ZLTE induced caspase-dependent apoptosis via ROS generation, suggesting that ZLTE is a promising herbal medicine for the treatment of NSCLC.

Result Analysis
Print
Save
E-mail