1.Development and validation of risk prediction model for carbapenem-resistant Klebsiella pneumoniae infection
Yinzhu MO ; Xianxiong CHENG ; Cangsang SONG ; Shijie LYU ; Baojun REN ; Zhiwei LI ; Jinying BAO ; Huanzhi YANG
China Pharmacy 2025;36(14):1786-1791
OBJECTIVE To investigate the independent risk factors for carbapenem-resistant Klebsiella pneumoniae (CRKP) infection, develop a nomogram prediction model and validate it. METHODS Clinical data of hospitalized patients infected with CRKP between April 2020 and May 2023 at Kunming First People’s Hospital were retrospectively collected and matched 1∶1 with patients infected with carbapenem-susceptible Klebsiella pneumoniae (CSKP) during the same period as the modeling group. Using the same criteria, data from patients hospitalized and infected with CRKP and matched CSKP between June 2023 and June 2024 were collected as the validation group. Univariate analysis, LASSO regression and multivariate Logistic regression were conducted to identify independent risk factors for CRKP infection and to develop a nomogram prediction model. Internal validation of the model was performed using Bootstrap resampling, and external validation was carried out using the data of validation group. The predictive performance of the model was evaluated using receiver operating characteristic (ROC) curves and calibration plots. RESULTS A total of 530 patients were enrolled, with 372 in the modeling group and 158 in the validation group. Cerebrovascular disease, indwelling gastric tube, mechanical ventilation, exposure to carbapenem antibiotics, and exposure to β-lactamase inhibitor compound agents were identified as independent risk factors for CRKP infection (P<0.05). The nomogram predicting CRKP infection risk achieved an area under ROC of 0.729 and 0.803 in internal and external validations, respectively. Calibration curves indicated a high degree of consistency between predicted and observed probabilities. CONCLUSIONS Cerebrovascular disease, indwelling gastric tube, mechanical ventilation, exposure to carbapenem antibiotics, and exposure to β-lactamase inhibitor compound agent are independent risk factors for CRKP infection. The developed nomogram model for predicting CRKP infection risk demonstrates good predictive performance and can aid in the early identification of patients at high risk for CRKP infection.
2.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
3.Research progress on the role of dopamine system in regulating hippocampal related brain functions.
Jing REN ; Wei-Yi MO ; Ling WANG ; Guang-Jian NI ; Jia-Jia YANG
Acta Physiologica Sinica 2025;77(5):893-904
Dopamine, as a catecholamine neurotransmitter widely distributed in the central nervous system, is involved in physiological functions such as motivation, arousal, reinforcement, and movement through various dopamine signaling pathways. The hippocampus receives dopaminergic neuron projections from regions such as the ventral tegmental area, locus coeruleus, and substantia nigra. Through D1-like and D2-like receptors, dopamine exerts significant regulatory effects such as spatial navigation, episodic memory, fear, anxiety, and reward. This review mainly summarizes the research progress on the functions of dopamine in the hippocampus from aspects including the sources of dopamine, receptor distribution and function, and the association of hippocampal dopamine system dysregulation with neurodegenerative diseases. The aim is to provide insights into the involvement of the dopamine system in hippocampal functions and the diagnosis and treatment of related diseases.
Hippocampus/physiology*
;
Dopamine/physiology*
;
Humans
;
Animals
;
Receptors, Dopamine D2/physiology*
;
Memory/physiology*
;
Signal Transduction/physiology*
;
Neurodegenerative Diseases/physiopathology*
4.A novel arterial coupler with non-return snap-fit connection approach optimized arterial end-to-end anastomotic technique: An experimental study.
Hong-Bo GUO ; Mo-Fei WANG ; Ren-Qi YIN ; Kang-Kang ZHI
Chinese Journal of Traumatology 2025;28(1):13-21
PURPOSE:
Hand-sewn anastomosis as the gold standard of vascular anastomosis cannot fully meet the requirements of vascular anastomosis in speed and quality. Various vascular couplers have been developed to ameliorate this situation. Most of them are mainly used for venous anastomosis rather than arterial anastomosis. Although it is generally acknowledged that in almost all operations involving vascular reconstruction, it is the arteries that need to be anastomosed faster and more accurately and not the veins. A dedicated device is needed for creating arterial anastomosis in an easy, timesaving, less damaging but reliable procedure. Therefore, we plan to develop a novel arterial coupler device and test pre-clinical safety and effectiveness.
METHODS:
In this cohort study, the rationality of this novel arterial coupler was preliminarily tested by finite element analysis before it was manufactured. Several factors restrict the use of vascular couplers in arterial anastomosis, such as arterial eversion, fixation, etc. The manufactured arterial couplers underwent in vitro and in vivo experiments. In vitro, isolated arteries of beagles were anastomosed with the assistance of an arterial coupler, and the anastomosed arteries were evaluated through anti-traction tests. In animal experiments, the bilateral femoral arteries of 5 beagles served as a control group. After dissection, the femoral artery on one side was randomly selected to be anastomosed with a quick arterial coupler (QAC) (QAC group), and the femoral artery on the other side was anastomosed by the same person using an end-to-end suture technique with a 6-0 Prolene suture (suture group). The bilateral femoral arteries of 5 beagles were used for coupler-assisted anastomosis and hand-sewn anastomosis in vivo, respectively. Success rate, blood loss, anastomotic time, clamp time, total operation time, and patency rate were recorded. The patency of anastomosed arteries was assessed using vascular Doppler ultrasound, electromagnetic flowmeter, and pathological examination (6 weeks after surgery).
RESULTS:
As a novel arterial coupler, QAC was successfully designed and manufactured by using poly lactic-co-glycolic acid raw materials and 3-dimensions printing technology. Its rationality was preliminarily tested through finite element analysis and related mechanical analysis methods. The isolated arteries were successfully anastomosed with the assistance of QAC in vitro testing, which showed good anti-traction properties. In animal studies, QAC-assisted arterial anastomosis has superior profiles compared to hand-sewn anastomosis in anastomotic time (7.80 ± 1.41 vs. 16.38 ± 1.04 min), clamp time (8.80 ± 1.41 vs. 14.14 ± 1.57 min), and total operation time (46.64 ± 2.38 vs. 51.96 ± 3.65 min). The results of electromagnetic flowmeter, vascular Doppler ultrasound, and pathological examination showed that QAC-assisted anastomotic arteries were superior to hand-sewn arteries in terms of postoperative blood flow (16.86 ± 3.93 vs. 10.36 ± 0.92 mL/min) and vascular patency in 6 weeks after surgery.
CONCLUSION
QAC is a well-designed and easily maneuverable device specialized for end-to-end arterial anastomosis. Application of this device may decrease thermal ischemia time and improve the patency of anastomotic arteries, thus, improving outcomes.
Animals
;
Anastomosis, Surgical/instrumentation*
;
Dogs
;
Femoral Artery/surgery*
;
Vascular Surgical Procedures/instrumentation*
;
Finite Element Analysis
5.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
6.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
7.Tracking observation of fine motor development in children aged 6-8 with attention deficit hyperactivity disorder
Chinese Journal of School Health 2024;45(6):831-834
Objective:
To examine the developmental trajectory of fine motor ability in schoolage children with attention deficit hyperactivity disorder (ADHD) for two years, so as to provide scientific evidence to promote motor development in ADHD children.
Methods:
From April to June 2019, 31 children aged 6-8 years old were selected from a public elementary school. They were diagnosed with ADHD by two psychiatric professionals according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria. Additionally, 31 typical developmental children, matched for age, sex and IQ with the ADHD group, were recruited as the control group. Fine motor ability was assessed with tasks of hand manual dexterity in Movement Assessment Battery for Children-2 (MACB-2), and a followup assessment was conducted from April to June 2021. The development changes of fine motor ability between two groups of children were compared by using t test and repeated measures analysis of variance.
Results:
Between baseline and followup periods after two years, the total score of hand fine motor in the ADHD group did not show significant improvement (7.4±3.0, 8.0±3.4; t=-1.05, P>0.05), while there was a small effect size improvement in typically developing control group (9.5±2.1, 10.5±2.4; t=-2.12, effect size=0.38, P<0.05). Followup after two years, coin/peg throwing scores with dominant hand improved between ADHD group and control group (7.0±3.3, 9.5±3.2; 8.4±2.8, 11.6±1.6) (t=-3.74, -6.33, P<0.01; effect size=0.67, 1.14), with a smaller improvement in the ADHD group. The score for threading beads/threads decreased in between ADHD group and control group (7.9±2.4, 5.8±3.1; 9.2±1.1, 8.2±1.9) (t=3.89, 2.78, P<0.01; effect size=0.70, 0.50), with a greater decrease in the ADHD group.
Conclusions
The development speed of fine motor ability in children with ADHD aged 6-8 is slow and continues to lag behind normal developmental children. Fine motor development in children with ADHD should be closely monitored, and targeted interventions should be implemented when necessary.
8.Toxicity and Mechanism of Di-(2-ethylhexyl) Phthalate on Testis
An-Ni FENG ; Ren-Ren SUN ; Yu-Bo XIAO ; Zhao-Ming ZENG ; Zhong-Cheng MO ; Yuan-Jie XIE
Progress in Biochemistry and Biophysics 2024;51(3):555-563
Di-(2-ethylhexyl) phthalate (DEHP) is currently one of the most widely used plasticizers, widely found in all kinds of items, such as children’s toys and food packaging materials, but also added to wallpaper, cable protective agents and other building decoration materials. DEHP is toxic and absorbed by the human body through respiratory tract, digestive tract and skin contact, which can cause damage to multiple systems, especially the male reproductive system, and testis is an important target organ. Oxidative stress injury is the core mechanism of spermatogenesis disorder caused by DEHP. DEHP exposure can cause oxidative stress or reactive oxygen species (ROS) increase in germ cells, and on this basis, promote cell apoptosis or cause excessive autophagy. The toxicity of DEHP to Leydig cells is mainly to interfere with the synthesis of steroid hormones. For Sertoli cells, ferroptosis and destruction of the blood-testis barrier are common injury mechanisms. In addition, gene methylation caused by DEHP not only affects the spermatogenic process, but also has epigenetic effects on offspring. In this paper, we reviewed the pathological damage, germ cell toxicity and epigenetic effects of DEHP on testis, and focused on the damage and molecular mechanism on testicular spermatogenic cells, Leydig cells and Sertoli cells. Future research is required to elucidate the body’s clearance mechanism and treatment plan after exposure to DEHP and whether DEHP will damage the function of myoid cells. It is hoped that this can provide new ideas for prevention and treatment of male reproductive disorders resulting from long-term exposure to plastic products.
9.Hepatoprotective activity of Zha xun from different sources of origin
Gyaltsen PENPA ; Mo-di LIN ; Hao QIANG ; Ren CI ; Teng-fei JI ; Ma MI ; Hua SUN
Acta Pharmaceutica Sinica 2024;59(4):972-978
In this study, the pharmacodynamic substance basis of the therapeutic activity of different origin sources of the Tibetan medicinal herb Zha xun was evaluated, and the protective effect of the Zha xun, from Habahe county of Altay region, Xinjiang Uygur Autonomous Region; Gilgit region, Pakistan; Lhozhag county of Lhozhag city, Tibet Autonomous Region; Lhorong county of Chamdo city, Tibet Autonomous Region; and Jiulong county of Ganzi Tibetan Autonomous Prefecture, Sichuan Province, on 0.2% carbon tetrachloride (CCl4)-induced acute liver injury in ICR mice was evaluated. The results showed that different sources of Zha xun significantly reduced serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) in the CCl4-induced acute oxidative liver injury model, improved liver histopathological damage. Among them, Zha xun from Habahe County, Altay Region, Xinjiang Uygur Autonomous Region; Gilgit Region, Pakistan; and Lhorong County, Chamdo City, Tibet Autonomous Region significantly reduced the malondialdehyde (MDA) content in liver tissues (
10.Protective effect of Shenbining granule on renal tissue of IgA nephropathy rats based on mitochondrial quality control system
Yanmin FAN ; Chundong SONG ; Huiyuan SHI ; Ke SONG ; Chenchen CHEN ; Xia ZHANG ; Xianqing REN ; Ying DING ; Mo WANG
China Pharmacy 2024;35(24):2984-2989
OBJECTIVE To explore the renal protective mechanism of Shenbining granules on IgA nephropathy (IgAN) rats based on mitochondrial quality control system. METHODS IgAN rat model was established by the method of “bovine serum albumin+carbon tetrachloride+lipopolysaccharide”. The model rats were randomly divided into model group, prednisone acetate group (6.25 mg/kg), Shenbining equal-dose group (4.1 g/kg) and Shenbining high-dose group (20.5 g/kg). The normal rats were taken as the normal control group, with 12 rats in each group. Rats were given corresponding drugs or distilled water intragastrically in each group, once a day, for 4 consecutive weeks. After the last medication, the 24 h total urinary protein (24 h- UTP) and erythrocyte count in urine were determined, and the levels of serum creatinine (Scr), blood urea nitrogen (BUN), albumin (ALB) and alanine transaminase (ALT) were also detected. The histopathological changes in the kidneys and changes in IgA deposition in the mesangial area of the kidney were observed. mRNA and protein expression levels of PTEN-induced putative kinase 1 (PINK1), E3 ubiquitin ligase(Parkin), microtubule-associated protein 1 light chain-3 (LC3), dynamin-related protein 1 (Drp1) and mitofusin 2 (Mfn2) were detected in the kidney tissues of rats. RESULTS Compared with model group, 24 h-UTP, urinary erythrocyte count, ALT, BUN and Scr levels, LC3-Ⅱ/LC3-Ⅰ mRNA ratio, mRNA and protein expressions of Drp1 were reduced significantly in prednisone acetate group, Shenbining equal-dose group and Shenbining high-dose group (P<0.05); ALB level, LC3-Ⅱ/LC3-Ⅰ protein ratio, mRNA and protein expressions of PINK1, Parkin and Mfn2 were increased significantly (P<0.05); the pathological morphology of kidney tissue in rats was significantly improved, and IgA deposition was significantly reduced. CONCLUSIONS Shenbining granule may reduce renal pathological injury in IgAN rats and protect renal function by activating the PINK1/Parkin pathway, enhancing mitochondrial autophagy, and correcting mitochondrial kinetic disorders.


Result Analysis
Print
Save
E-mail