1.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
2.Regulation of apoptosis and autophagy in hepatoblastoma cells by Ganoderma lucidum polysaccharides through Akt/mTOR pathway.
Yang GE ; Hang GAO ; Yun-Peng QIN ; Rui SHEN ; Hua-Zhang WU ; Ting YE ; Hang SONG
China Journal of Chinese Materia Medica 2025;50(9):2432-2441
This research investigated the impact of Ganoderma lucidum polysaccharides(GLP) on hepatoblastoma HepG2 and Huh6 cell models, as well as KM mouse model with in situ transplanted tumors, so as to provide a theoretical basis for the clinical application of GLP. Cell viability was assessed through the CCK-8 assay, whereas cell proliferation was evaluated by using the BeyoClick~(TM)EdU-488 test. Cell apoptosis was visualized via Hochest 33258 staining, and autophagy was detected through Mrfp-GFP-LC3 dual fluorescence staining. An in situ tumor transplantation model was created by using HepG2 cells in mice, and mice were treated with normal saline and GLP of 100, 200, and 300 mg·kg~(-1) for tumor count calculation and size assessment. Hematoxylin-eosin(HE) staining was used to observe pathological changes in tumor tissue and vital organs(liver, kidney, lung, spleen, and heart). Western blot analysis was conducted to measure the protein expressions of tumor protein P53(P53), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved-caspase-3, Beclin-1, autophagy related protein-5(Atg-5), microtubule-associated protein-light chain-3Ⅰ(LC3Ⅰ)/LC3Ⅱ, autophagy adapter protein 62(P62), protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR. The in vitro experiment revealed that compared with the control group, after GLP treatment, tumor cell viability decreased significantly; apoptosis rate increased in a dose-dependent manner, and autophagic flux was inhibited. The in vivo experiments showed that compared with the model group, mice treated with GLP exhibited significantly fewer and smaller tumors. Western blot results showed that compared with the control group or model group, levels of P53, Bax, cleaved-caspase-3, Beclin-1, Atg-5, and LC3-Ⅱ/LC3-Ⅰ were significantly increased after GLP treatment, and the levels of Bcl-2, P62, p-Akt/Akt, and p-mTOR/mTOR were significantly decreased. These outcomes suggest that GLP promotes apoptosis and autophagy in hepatoblastoma cells by regulating the Akt/mTOR pathway.
Animals
;
Humans
;
Autophagy/drug effects*
;
Reishi/chemistry*
;
Mice
;
Apoptosis/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Liver Neoplasms/genetics*
;
Hepatoblastoma/genetics*
;
Polysaccharides/pharmacology*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Male
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
3.Research progress on chemical constituents and pharmacological effects of Ganoderma lucidum spore oil.
China Journal of Chinese Materia Medica 2025;50(8):2071-2079
Originating from sporoderm-broken Ganoderma lucidum spores, Ganoderma lucidum spore oil(GLSO) is prepared by supercritical fluid extraction. Chemical composition studies show that GLSO mainly contains nonpolar substances, such as fatty acids, triglycerides, and steroids. GLSO is also famous for its edible and medical functions. It possesses various pharmacological effects, including anti-tumor, immune boosting, anti-fatigue, antioxidant property, and organ protection. This paper systematically summarizes the chemical constituents and pharmacological effects of GLSO, aiming to provide a reference for its future research and application.
Reishi/chemistry*
;
Spores, Fungal/chemistry*
;
Humans
;
Animals
;
Oils/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
4.Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice.
Feng HU ; Yu YAN ; Chu-Wang WANG ; Yu LIU ; Jing-Jing WANG ; Fang ZHOU ; Qing-Hai ZENG ; Xiao ZHOU ; Jia CHEN ; Ai-Jun WANG ; Jian-da ZHOU
Chinese journal of integrative medicine 2019;25(3):203-209
OBJECTIVE:
To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism.
METHODS:
Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-β1 (TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated.
RESULTS:
Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01).
CONCLUSION
A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.
Animals
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
biosynthesis
;
Fibroblasts
;
drug effects
;
Humans
;
Male
;
Mice
;
Polysaccharides
;
pharmacology
;
Reishi
;
chemistry
;
Skin
;
drug effects
;
injuries
;
Transforming Growth Factor beta1
;
physiology
;
Wound Healing
;
drug effects
;
beta Catenin
;
physiology
5.Pharmacokinetics of ganoderic acids.
China Journal of Chinese Materia Medica 2019;44(5):905-911
Ganoderic acid(GA) is one of main bioactive components produced by Ganoderma lucidum,which a traditional Chinese herbal medicine and a kind of tracyclic triterpene lanosterol derivatives with highly oxidized structure. It has a variety of important pharmacological activities,such as anticancer,immunoregulation,anti-oxidation,anti-diabetes and anti-HIV. At present,the studies of GA mainly focus on biosynthesis,fermentation control,isolation and purification,structure identification and pharmacological effects.However,there are a fewer pharmacokinetic studies of GA,although it is closely related to the clinical application. Recent studies have shown that GA can be absorbed rapidly by gastrointestinal tract and distributed in various tissues and organs after oral intake. GA is metabolized by liver at phase Ⅰ and phase Ⅱ,and then mainly excreted by bile. In this paper,the pharmacokinetic characteristics of GA and its absorption,distribution,metabolism and excretion(ADME) will be systematically summarized,in order to provide scientific basis for the application and development studies of Ganoderma triterpenoid drugs and their rational clinical use.
Humans
;
Lanosterol
;
pharmacokinetics
;
Reishi
;
chemistry
;
Triterpenes
;
pharmacokinetics
6.Rapid identification of geographical origins and determination of polysaccharides contents in Ganoderma lucidum based on near infrared spectroscopy and chemometrics.
LAI CJS ; Rong-Rong ZHOU ; Yi YU ; Wen ZENG ; Ming-Hua HU ; Luo-di FAN ; Lin CHEN ; Zi-Dong QIU ; Chuan SONG ; Shui-Han ZHANG ; Lan-Ping GUO ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2018;43(16):3243-3248
Near infrared spectroscopy combined with chemometrics methods was used to distinguish Ganoderma lucidum samples collected from different origins, and a prediction model was established for rapid determine polysaccharides contents in these samples. The classification accuracy for training dataset was 96.87%, while for independent dataset was 93.33%; as for the prediction model, 5-fold cross-validation was used to optimize the parameters, and different signal processing methods were also optimized to improve the prediction ability of the model. The best square of correlation coefficients for training dataset was 0.965 4, and 0.851 6 for validation dataset; while the root-mean-square deviation values for training dataset and validation dataset were 0.018 5 and 0.023 6, respectively. These results showed that combining near infrared spectroscopy with suitable chemometrics approaches could accuracy distinguish different origins of G. lucidum samples; the established prediction model could precious predict polysaccharides contents, the proposed method can help determine the activity compounds and quality evaluation of G. lucidum.
Fungal Polysaccharides
;
analysis
;
Geography
;
Least-Squares Analysis
;
Reishi
;
chemistry
;
Spectroscopy, Near-Infrared
7.Analysis of fatty composition from different parts of Ganoderma lucidum.
Jing-jing LI ; Jing-jing LIU ; Jin-ping SI ; Long-shu CAO
China Journal of Chinese Materia Medica 2015;40(14):2814-2819
The oil content and fatty acid composition of Ganoderma lucidum collected from different producing areas, varieties, tissue types and growth periods were measured and analyzed. The results showed that the oil content was 23. 61%-34.17% in different domestic producing areas of China; the oil content of fruiting bodies from major varieties cultured in Zhejiang province were 0.81%-1.87%, wall-unbroken spores were 0.07%-0.24%, wall-broken spores were 27.54%-34.17%, so the oil content of wall-unbroken spores were much higher than fruiting bodies, and wall-breaking treatment would increase the oil extraction rate 150-340 times. G. lucidum spores oil was mainly composed of unsaturated fatty acid composition. oleic acid and linoleic content were 53.26%-58.16% and 10.69%-16.87% respectively. Fatty acid composition ratio of spores and fruiting bodies were significantly different by PLS-DA. Determining the composition of fatty acid, especially the content of oleic acid, stearic acid and palmitic acid, could identify the tissue types of G. lucidum products' sources. In addition, the study result showed that the spores and fruiting bodies collected in the first year contained richer oil and fatty acid than second year's samples from the same variety of G. lucidum.
Fatty Acids
;
analysis
;
Oils
;
analysis
;
Reishi
;
chemistry
8.Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.
Tao WANG ; Zi-ping XIE ; Zhan-sen HUANG ; Hao LI ; An-yang WEI ; Jin-ming DI ; Heng-jun XIAO ; Zhi-gang ZHANG ; Liu-hong CAI ; Xin TAO ; Tao QI ; Di-ling CHEN ; Jun CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):736-741
In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.
Antineoplastic Agents, Phytogenic
;
isolation & purification
;
pharmacology
;
Apoptosis
;
drug effects
;
Caspase 3
;
genetics
;
metabolism
;
Caspase 9
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Cyclin D1
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase 4
;
genetics
;
metabolism
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
E2F1 Transcription Factor
;
genetics
;
metabolism
;
G1 Phase Cell Cycle Checkpoints
;
drug effects
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
Nucleosomes
;
drug effects
;
metabolism
;
pathology
;
Plant Extracts
;
chemistry
;
Prostate
;
drug effects
;
metabolism
;
pathology
;
Reishi
;
chemistry
;
Signal Transduction
;
Triterpenes
;
isolation & purification
;
pharmacology
9.Analysis of triterpenoids in Ganoderma lucidum by microwave-assisted continuous extraction.
Yan-fang LU ; Jing AN ; Ye JIANG
China Journal of Chinese Materia Medica 2015;40(7):1296-1299
For further improving the extraction efficiency of microwave extraction, a microwave-assisted contijuous extraction (MACE) device has been designed and utilized. By contrasting with the traditional methods, the characteristics and extraction efficiency of MACE has also been studied. The method was validated by the analysis of the triterpenoids in Ganoderma lucidum. The extraction conditions of MACE were: using 95% ethanol as solvent, microwave power 200 W and radiation time 14.5 min (5 cycles). The extraction results were subsequently compared with traditional heat reflux extraction ( HRE) , soxhlet extraction (SE), ultrasonic extraction ( UE) as well as the conventional microwave extraction (ME). For triterpenoids, the two methods based on the microwaves (ME and MACE) were in general capable of finishing the extraction in 10, 14.5 min, respectively, while other methods should consume 60 min and even more than 100 min. Additionally, ME can produce comparable extraction results as the classical HRE and higher extraction yield than both SE and UE, however, notably lower extraction yield than MASE. More importantly, the purity of the crud extract by MACE is far better than the other methods. MACE can effectively combine the advantages of microwave extraction and soxhlet extraction, thus enabling a more complete extraction of the analytes of TCMs in comparison with ME. And therefore makes the analytic result more accurate. It provides a novel, high efficient, rapid and reliable pretreatment technique for the analysis of TCMs, and it could potentially be extended to ingredient preparation or extracting techniques of TCMs.
Chemical Fractionation
;
methods
;
Drugs, Chinese Herbal
;
analysis
;
isolation & purification
;
Microwaves
;
Reishi
;
chemistry
;
Terpenes
;
analysis
;
isolation & purification
10.Study on variation of main ingredients from spores and fruiting bodies of Ganoderma lucidum.
Jing-Jing LI ; Xiao-Qin HU ; Xin-Feng ZHANG ; Jing-Jing LIU ; Long-Shu CAO
China Journal of Chinese Materia Medica 2014;39(21):4246-4251
OBJECTIVETo reveal the quality variation of polysaccharides, triterpenoids and proteins in spores and fruiting bodies of Ganoderma lucidum from producing areas, different varieties, harvesting parts and periods, and wall-breaking treatments.
METHODSpores and fruiting bodies from varieties of Longzhi No. 1 and Hunong No. 1 were collected as test samples, together with wall-broken spores sold in domestic main producing areas. The anthrone-sulfuric acid colorimetric method was used to determine the content of total polysaccharides. The vanillin-glacial acetic acid-perchloric acid colorimetric method was used to determine the content of total triterpenoids. The Lowry method was used to determine the content of total proteins.
RESULTThe content ranges of total polysaccharides, total triterpenoids, and total proteins from 6 domestic main producing areas were 0.40% - 2.25%, 1.36%-3.15% and 0.74% -1.91% respectively. The content ranges of total polysaccharides, triterpenoids, and proteins in the fruiting bodies from 2 varieties cultured in Zhejiang were 0.25% -1.42%, 0.44% -1.42% and 1.82% -3.67% respectively. In addition, the ranges of samples from wall-unbroken spores were 0.41% - 0.91%, 0.09% - 0.12%, 0.78% - 0.90% respectively and wall-broken spores are 1.03% - 2.25%, 1.89% - 3.15%, 0.96% - 1.04% respectively.
CONCLUSIONThere are significant differences in the contents of main chemical ingredients of wall-broken G. lucidum spores saled in the markets. The samples from Zhejiang contain high content of total polysaccharides and triterpenoids, and samples from Fujian contains more proteins. Between the 2 major varieties cultured in Zhejiang, Longzhi No. 1 contains higher content of triterpenoids, but Hunong No. 1 has more polysaccharides. Contents of triterpenoids and polysaccharides from wall-broken spores are much higher than those of fruiting bodies. The stipes from fruiting bodies contains more polysaccharides than those of the pileus, while the triterpenoids contents are higher in the pileus than stipes. The pileus and stipes collected in the second year contain higher content of polysaccharides than the first year's samples, but the contents of triterpenoids are lower. Wall-breaking treatment would significantly improve the extraction and dissolution rate of total triterpenoids and polysaccharides.
Fungal Proteins ; analysis ; Polysaccharides ; analysis ; Reishi ; chemistry ; Spores, Fungal ; chemistry ; Triterpenes ; analysis

Result Analysis
Print
Save
E-mail