1.Biological characteristics and translational research of dental stem cells.
Qianmin OU ; Zhengshi LI ; Luhan NIU ; Qianhui REN ; Xinyu LIU ; Xueli MAO ; Songtao SHI
Journal of Peking University(Health Sciences) 2025;57(5):827-835
Dental stem cells (DSCs), a distinct subset of mesenchymal stem cells (MSCs), are isolated from dental tissues, such as dental pulp, exfoliated deciduous teeth, periodontal ligament, and apical papilla. They have emerged as a promising source of stem cell therapy for tissue regeneration and autoimmune disorders. The main types of DSCs include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Each type exhibits distinct advantages: easy access via minimally invasive procedures, multi-lineage differentiation potential, and excellent ethical acceptability. DSCs have demonstrated outstanding clinical efficacy in oral and maxillofacial regeneration, and their long-term safety has been verified. In oral tissue regeneration, DSCs are highly effective in oral tissue regeneration for critical applications such as the restoration of dental pulp vitality and periodontal tissue repair. A defining advantage of DSCs lies in their ability to integrate with host tissues and promote physiological regeneration, which render them a better option for oral tissue regenerative therapies. Beyond oral applications, DSCs also exhibit promising potential in the treatment of systemic diseases, including type Ⅱ diabetes and autoimmune diseases due to their immunomodulatory effects. Moreover, extracellular vesicles (EVs) derived from DSCs act as critical mediators for DSCs' paracrine functions. Possessing regulatory properties similar to their parental cells, EVs are extensively utilized in research targeting tissue repair, immunomodulation, and regenerative therapy-offering a "cell-free" strategy to mitigate the limitations associated with cell-based therapies. Despite these advancements, standardizing large-scale manufacturing, maintaining strict quality control, and clarifying the molecular mechanisms underlying the interaction of DSCs and their EVs with recipient tissues remain major obstacles to the clinical translation of these treatments into broad clinical use. Addressing these barriers will be critical to enhancing their clinical applicability and therapeutic efficacy. In conclusion, DSCs and their EVs represent a transformative approach in regenerative medicine, and increasing clinical evidence supports their application in oral and systemic diseases. Continuous innovation remains essential to unlocking the widespread clinical potential of DSCs.
Humans
;
Dental Pulp/cytology*
;
Translational Research, Biomedical
;
Mesenchymal Stem Cells/cytology*
;
Periodontal Ligament/cytology*
;
Stem Cells/cytology*
;
Regeneration
;
Tooth, Deciduous/cytology*
;
Cell Differentiation
;
Tissue Engineering/methods*
;
Regenerative Medicine
2.Application of growth factors and their mimetics in tissue repair.
Zhuanglin HUANG ; Yufeng CHEN ; Yuanling LIU ; Hong LIANG
Chinese Journal of Biotechnology 2025;41(4):1291-1308
Growth factors (GFs) are a class of peptides that facilitate cell growth by binding to specific receptors on the cell membrane. With unique properties, GFs are widely applied in the repair of injured tissue. To address the limitations associated with natural peptide-based GFs and recombinant GFs, researchers have developed diverse GF mimetics. This article offers a comprehensive review on common types of GFs and their applications in tissue repair and summarizes the features of GF mimetics currently under development. The aim is to provide valuable references for promoting the application of GFs in regenerative medicine.
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Humans
;
Tissue Engineering/methods*
;
Regenerative Medicine/methods*
;
Animals
;
Wound Healing/drug effects*
;
Biomimetic Materials
3.Organoids in the oral and maxillofacial region: present and future.
Yufei WU ; Xiang LI ; Hanzhe LIU ; Xiao YANG ; Rui LI ; Hui ZHAO ; Zhengjun SHANG
International Journal of Oral Science 2024;16(1):61-61
The oral and maxillofacial region comprises a variety of organs made up of multiple soft and hard tissue, which are anatomically vulnerable to the pathogenic factors of trauma, inflammation, and cancer. The studies of this intricate entity have been long-termly challenged by a lack of versatile preclinical models. Recently, the advancements in the organoid industry have provided novel strategies to break through this dilemma. Here, we summarize the existing biological and engineering approaches that were employed to generate oral and maxillofacial organoids. Then, we detail the use of modified co-culture methods, such as cell cluster co-inoculation and air-liquid interface culture technology to reconstitute the vascular network and immune microenvironment in assembled organoids. We further retrospect the existing oral and maxillofacial assembled organoids and their potential to recapitulate the homeostasis in parental tissues such as tooth, salivary gland, and mucosa. Finally, we discuss how the next-generation organoids may benefit to regenerative and precision medicine for treatment of oral-maxillofacial illness.
Organoids
;
Humans
;
Tissue Engineering/methods*
;
Coculture Techniques
;
Regenerative Medicine
;
Mouth
4.Advances in the combination of stem cell exosomes with medical devices-the new direction for combination products.
Yuewen ZHAI ; Fang HE ; Ji FANG ; Siwen LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(12):1067-1075
Exosomes (exos), nanoscale extracellular vesicles, play a critical role in tissue development and function. Stem cell-derived exos, containing various tissue repair components, show promise as natural therapeutic agents in disease treatment and regenerative medicine. However, challenges persist in their application, particularly in targeted delivery and controlled release, which are crucial for enhancing their biological efficacy. The integration of medical devices may provide a superior platform for improving drug bioavailability. Consequently, the combination products of stem cell-derived exos and medical devices present novel opportunities for expanding the therapeutic potential of exosomes. This review offers a comprehensive overview of the current research frontier in stem cell-derived exos combined with medical devices and discusses the prospective challenges and future prospects in this field.
Animals
;
Humans
;
Drug Delivery Systems
;
Equipment and Supplies
;
Exosomes/metabolism*
;
Regenerative Medicine/methods*
;
Stem Cells/metabolism*
5.Cell-loaded hydrogel microspheres based on droplet microfluidics: a review.
Caiyun ZHANG ; Yi ZENG ; Na XU ; Zhiling ZHANG
Chinese Journal of Biotechnology 2023;39(1):74-85
Droplet microfluidics technology offers refined control over the flows of multiple fluids in micro/nano-scale, enabling fabrication of micro/nano-droplets with precisely adjustable structures and compositions in a high-throughput manner. With the combination of proper hydrogel materials and preparation methods, single or multiple cells can be efficiently encapsulated into hydrogels to produce cell-loaded hydrogel microspheres. The cell-loaded hydrogel microspheres can provide a three-dimensional, relatively independent and controllable microenvironment for cell proliferation and differentiation, which is of great value for three-dimensional cell culture, tissue engineering and regenerative medicine, stem cell research, single cell study and many other biological science fields. In this review, the preparation methods of cell-loaded hydrogel microspheres based on droplet microfluidics and its applications in biomedical field are summarized and future prospects are proposed.
Hydrogels/chemistry*
;
Microfluidics/methods*
;
Microspheres
;
Regenerative Medicine
;
Tissue Engineering/methods*
6.Application of decellularization-recellularization technique in plastic and reconstructive surgery.
Yujia SHANG ; Guanhuier WANG ; Yonghuan ZHEN ; Na LIU ; Fangfei NIE ; Zhenmin ZHAO ; Hua LI ; Yang AN
Chinese Medical Journal 2023;136(17):2017-2027
In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
;
Surgery, Plastic
;
Regenerative Medicine/methods*
;
Extracellular Matrix
7.Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis.
Hanbo LI ; Xiaoyu WEI ; Li ZHOU ; Weiqi ZHANG ; Chen WANG ; Yang GUO ; Denghui LI ; Jianyang CHEN ; Tianbin LIU ; Yingying ZHANG ; Shuai MA ; Congyan WANG ; Fujian TAN ; Jiangshan XU ; Yang LIU ; Yue YUAN ; Liang CHEN ; Qiaoran WANG ; Jing QU ; Yue SHEN ; Shanshan LIU ; Guangyi FAN ; Longqi LIU ; Xin LIU ; Yong HOU ; Guang-Hui LIU ; Ying GU ; Xun XU
Protein & Cell 2021;12(1):57-66
Ambystoma mexicanum/immunology*
;
Amputation
;
Animals
;
Biomarkers/metabolism*
;
Blastomeres/immunology*
;
Cell Lineage/immunology*
;
Connective Tissue Cells/immunology*
;
Epithelial Cells/immunology*
;
Forelimb
;
Gene Expression
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Immunity
;
Peroxiredoxins/immunology*
;
Regeneration/immunology*
;
Regenerative Medicine/methods*
;
Single-Cell Analysis/methods*
8.Generation of Organotypic Multicellular Spheres by Magnetic Levitation: Model for the Study of Human Hematopoietic Stem Cells Microenvironment
Claudia Camila MEJÍA-CRUZ ; Emilia BARRETO-DURÁN ; María Alejandra PARDO-PÉREZ ; María Camila JIMENEZ ; Julieth RINCÓN ; Karen VANEGAS ; Jorge Luis RODRÍGUEZ ; Luis Fernando JARAMILLO-GARCIA ; Juan Carlos ULLOA ; Rodolfo Martínez DÍAZ ; Efrain LEAL-GARCÍA ; Rafael PÉREZ-NÚÑEZ ; Alfonso BARRETO ; Viviana M RODRÍGUEZ-PARDO
International Journal of Stem Cells 2019;12(1):51-62
BACKGROUND AND OBJECTIVE: The characteristics of human hematopoietic stem cells are conditioned by the microenvironment of the bone marrow, where they interact with other cell populations, such as mesenchymal stem cells and endothelial cells; however, the study of this microenvironment is complex. The objective of this work was to develop a 3D culture system by magnetic levitation that imitates the microenvironment of human HSC. METHODS AND RESULTS: Human bone marrow-mesenchymal stem cells, umbilical cord blood-hematopoietic stem cells and a non-tumoral endothelial cell line (CC2811, Lonza®) were used to develop organotypic multicellular spheres by the magnetic levitation method. We obtained viable structures with an average sphericity index greater than 0.6, an average volume of 0.5 mm3 and a percentage of aggregation greater than 70%. Histological studies of the organotypic multicellular spheres used hematoxylin and eosin stains, and an evaluation of vimentin expression by means of immunohistochemistry demonstrated an organized internal structure without picnotic cells and a high expression of vimentin. The functional capacity of human hematopoietic stem cells after organotypic multicellular spheres culture was evaluated by multipotency tests, and it was demonstrated that 3D structures without exogenous Flt3L are autonomous in the maintenance of multipotency of human hematopoietic stem cells. CONCLUSIONS: We developed organotypic multicellular spheres from normal human cells that mimic the microenvironment of the human hematopoietic stem cells. These structures are the prototype for the development of complex organoids that allow the further study of the biology of normal human stem cells and their potential in regenerative medicine.
Biology
;
Bone Marrow
;
Coloring Agents
;
Endothelial Cells
;
Eosine Yellowish-(YS)
;
Hematopoietic Stem Cells
;
Hematoxylin
;
Humans
;
Immunohistochemistry
;
Mesenchymal Stromal Cells
;
Methods
;
Organoids
;
Regenerative Medicine
;
Stem Cells
;
Umbilical Cord
;
Vimentin
9.Differentiation Capacity of Monocyte-Derived Multipotential Cells on Nanocomposite Poly(e-caprolactone)-Based Thin Films
Iro KOLIAKOU ; Eleni GOUNARI ; Maria NERANTZAKI ; Eleni PAVLIDOU ; Dimitrios BIKIARIS ; Martha KALOYIANNI ; George KOLIAKOS
Tissue Engineering and Regenerative Medicine 2019;16(2):161-175
BACKGROUND: Lonocyte-derived multipotential cells (MOMCs) include progenitors capable of differentiation into multiple cell lineages and thus represent an ideal autologous transplantable cell source for regenerative medicine. In this study, we cultured MOMCs, generated from mononuclear cells of peripheral blood, on the surface of nanocomposite thin films. METHODS: For this purpose, nanocomposite Poly(e-caprolactone) (PCL)-based thin films containing either 2.5 wt% silica nanotubes (SiO2ntbs) or strontium hydroxyapatite nanorods (SrHAnrds), were prepared using the spin-coating method. The induced differentiation capacity of MOMCs, towards bone and endothelium, was estimated using flow cytometry, real-time polymerase chain reaction, scanning electron microscopy and fluorescence microscopy after cells' genetic modification using the Sleeping Beauty Transposon System aiming their observation onto the scaffolds. Moreover, Wharton's Jelly Mesenchymal Stromal Cells were cultivated as a control cell line, while Human Umbilical Vein Endothelial Cells were used to strengthen and accelerate the differentiation procedure in semi-permeable culture systems. Finally, the cytotoxicity of the studied materials was checked with MTT assay. RESULTS: The highest differentiation capacity of MOMCs was observed on PCL/SiO2ntbs 2.5 wt% nanocomposite film, as they progressively lost their native markers and gained endothelial lineage, in both protein and transcriptional level. In addition, the presence of SrHAnrds in the PCL matrix triggered processes related to osteoblast bone formation. CONCLUSION: To conclude, the differentiation of MOMCs was selectively guided by incorporating SiO2ntbs or SrHAnrds into a polymeric matrix, for the first time.
Autografts
;
Beauty
;
Cell Line
;
Cell Lineage
;
Durapatite
;
Endothelium
;
Flow Cytometry
;
Human Umbilical Vein Endothelial Cells
;
Mesenchymal Stromal Cells
;
Methods
;
Microscopy, Electron, Scanning
;
Microscopy, Fluorescence
;
Nanocomposites
;
Nanotubes
;
Osteoblasts
;
Osteogenesis
;
Polymers
;
Real-Time Polymerase Chain Reaction
;
Regenerative Medicine
;
Silicon Dioxide
;
Strontium
;
Wharton Jelly
10.Comprehensive therapeutics targeting the corticospinal tract following spinal cord injury.
An-Kai XU ; Zhe GONG ; Yu-Zhe HE ; Kai-Shun XIA ; Hui-Min TAO
Journal of Zhejiang University. Science. B 2019;20(3):205-218
Spinal cord injury (SCI), which is much in the public eye, is still a refractory disease compromising the well-being of both patients and society. In spite of there being many methods dealing with the lesion, there is still a deficiency in comprehensive strategies covering all facets of this damage. Further, we should also mention the structure called the corticospinal tract (CST) which plays a crucial role in the motor responses of organisms, and it will be the focal point of our attention. In this review, we discuss a variety of strategies targeting different dimensions following SCI and some treatments that are especially efficacious to the CST are emphasized. Over recent decades, researchers have developed many effective tactics involving five approaches: (1) tackle more extensive regions; (2) provide a regenerative microenvironment; (3) provide a glial microenvironment; (4) transplantation; and (5) other auxiliary methods, for instance, rehabilitation training and electrical stimulation. We review the basic knowledge on this disease and correlative treatments. In addition, some well-formulated perspectives and hypotheses have been delineated. We emphasize that such a multifaceted problem needs combinatorial approaches, and we analyze some discrepancies in past studies. Finally, for the future, we present numerous brand-new latent tactics which have great promise for curbing SCI.
Animals
;
Astrocytes/cytology*
;
Axons/physiology*
;
Cell Transplantation
;
Disease Models, Animal
;
Electric Stimulation
;
Humans
;
Microglia/cytology*
;
Motor Neurons/cytology*
;
Nerve Regeneration
;
Neuroglia/cytology*
;
Neuronal Plasticity
;
Neurons/cytology*
;
Oligodendroglia/cytology*
;
Pyramidal Tracts/pathology*
;
Recovery of Function
;
Regenerative Medicine/methods*
;
Spinal Cord Injuries/therapy*

Result Analysis
Print
Save
E-mail