1.The Singapore Green Plan 2030: occupational health hazards in the Singapore green economy.
Wei Xiang LIM ; Mei Ling Licia TAN ; Tzu Li Sylvia TEO ; Wee Hoe GAN ; Shiu Hong Joshua WONG
Singapore medical journal 2025;66(4):181-189
The Singapore Green Plan 2030 was released by the Singapore government to set targets for sustainability by 2030. The adoption of novel technologies, processes and substances creates new jobs, and such developments bring about new challenges and risks for both employers and workers. Beyond emerging hazards, traditional hazards still remain, but they may take on new forms through new work processes. This review aims to provide an overview of the potential occupational health issues we may encounter or anticipate in these key sectors: solar energy, waste management and recycling, green buildings, electric vehicles and battery recycling, and sustainable fuels. While existing Occupational Safety and Health regulations in Singapore serve as a foundation, there may be gaps in addressing the specific hazards and risks associated with green jobs. In this review, we propose and outline possible approaches to the protection of worker safety and health.
Singapore
;
Humans
;
Occupational Health
;
Recycling
;
Waste Management
;
Solar Energy
;
Occupational Exposure
2.Enzymatic depolymerization of polyester-cotton textiles for the recovery of terephthalic acid.
Hongzhao WANG ; Yuntao CUN ; Minxuan WANG ; Zhenwu YANG ; Hao HE ; Yushan ZHU
Chinese Journal of Biotechnology 2025;41(9):3553-3566
Polyethylene terephthalate (PET) fibers are characterized by exceptional mechanical strength, and textiles blended with cotton fibers combine both comfort and durability, showcasing widespread use in daily applications. However, improper disposal of discarded polyester-cotton textiles has resulted in severe environmental pollution, necessitating urgent and effective mitigation strategies. Enzymatic recycling of textiles offers superior environmental benefits and holds greater potential for industrial applications than alternative recycling methods. This study aims to explore a large-scale solution for the treatment of waste textiles, particularly addressing the challenge of resource recovery from polyester-cotton blended fabrics. An innovative enzymatic depolymerization process has been developed to achieve the recovery of high-purity terephthalic acid monomers. Experiments were conducted on three different textile blends with polyester-to-cotton ratios of 65/35, 70/30, and 80/20, and the influences of different colors on the process were investigated. Initially, the textiles were pretreated through mechanical grinding, which was followed by depolymerization of cotton fibers with commercial cellulase. The crystallinity of PET in the textiles was reduced through a rapid heating and cooling process. Subsequently, the PET was depolymerized by the engineered PET hydrolase. The results demonstrated that after decolorization and separation of terephthalic acid (TPA) from the reaction system, the monomer recovery rates for the three textile blends (65/35, 70/30, and 80/20) reached 90%, 91%, and 92%, respectively. Characterization analysis by nuclear magnetic resonance (NMR) confirmed that the purity of the recovered TPA was greater than 99%. In conclusion, the fully enzymatic recycling process developed in this study shows considerable promise for large-scale industrial applications and is anticipated to significantly advance the adoption and development of enzymatic recycling technologies for PET in industrial processes.
Phthalic Acids/chemistry*
;
Polyesters/chemistry*
;
Textiles
;
Cotton Fiber
;
Polyethylene Terephthalates/chemistry*
;
Cellulase/chemistry*
;
Recycling/methods*
;
Polymerization
3.Opportunities, challenges and suggestions for the development of plastic degradation and recycling under the context of circular bioeconomy.
Rui XU ; Fang CHEN ; Chenjun DING
Chinese Journal of Biotechnology 2023;39(5):1867-1882
At present, the negative impact caused by white pollution has spread to all aspects of human society economy, ecosystem, and health, which causes severe challenges for developing the circular bioeconomy. As the largest plastic production and consumption country in the world, China has shouldered an important responsibility in plastic pollution control. In this context, this paper analyzed the relevant strategies of plastic degradation and recycling in the United States, Europe, Japan and China, measured the literature and patents in this field, analyzed the status quo of technology from the perspective of research and development trends, major countries, major institutions, and discussed the opportunities and challenges faced by the development of plastic degradation and recycling in China. Finally, we put forward future development suggestions which include the integration of policy system, technology path, industry development and public cognition.
Humans
;
Plastics
;
Ecosystem
;
Environmental Pollution
;
Recycling
;
Policy
4.Advances in microbial degradation of plastics.
Tongyao LIU ; Yi XIN ; Xingzhong LIU ; Bing WU ; Meichun XIANG
Chinese Journal of Biotechnology 2021;37(8):2688-2702
Plastics are widely used in daily life. Due to poor management and disposal, about 80% of plastic wastes were buried in landfills and eventually became land and ocean waste, causing serious environmental pollution. Recycling plastics is a desirable approach, but not applicable for most of the plastic waste. Microbial degradation offers an environmentally friendly way to degrade the plastic wastes, and this review summarizes the potential microbes, enzymes, and the underpinning mechanisms for degrading six most commonly used plastics including polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene and polyurethane. The challenges and future perspectives on microbial degradation of plastics were proposed.
Biodegradation, Environmental
;
Plastics
;
Polyurethanes
;
Recycling
5.Worker Safety in the Rare Earth Elements Recycling Process From the Review of Toxicity and Issues
Seo Ho SHIN ; Hyun Ock KIM ; Kyung Taek RIM
Safety and Health at Work 2019;10(4):409-419
Although the rare earth elements (REEs) recycling industry is expected to increase worldwide in high-tech industry, regulations for worker safety have yet to be established. This study was conducted to understand the potential hazard/risk of REE recycling and to support the establishment of regulations or standards. We review the extensive literature on the toxicology, occupational safety, and health issues, and epidemiological surveys related to the REEs, and propose suitable management measures. REE recycling has four key steps such as collection, dismantling, separation, and processing. In these processes, hazardous substances, such as REEs-containing dust, metals, and chemicals, were used or occurred, including the risk of ignition and explosion, and the workers can be easily exposed to them. In addition, skin irritation and toxicities for respiratory, nervous, and cardiovascular systems with the liver toxicity were reported; however, more supplementary data are needed, owing to incompleteness. Therefore, monitoring systems concerning health, environmental impacts, and safety need to be established, based on additional research studies. It is also necessary to develop innovative and environment-friendly recycling technologies, analytical methods, and biomarkers with government support. Through these efforts, the occupational safety and health status will be improved, along with the establishment of advanced REE recycling industry.
Biomarkers
;
Cardiovascular System
;
Dust
;
Environmental Health
;
Explosions
;
Hazardous Substances
;
Liver
;
Metals
;
Occupational Health
;
Recycling
;
Skin
;
Social Control, Formal
;
Toxicology
6.The flip-flap puzzle flap: Another recycling option
Silvia GANDOLFI ; Raphael CARLONI ; Matthieu GILLERON ; Albane BONMARCHAND ; Isabelle AUQUIT-AUCKBUR
Archives of Plastic Surgery 2019;46(2):176-180
Post-traumatic soft tissue defects sometimes require sequential flap coverage to achieve complete healing. In the era of propeller flaps, which were developed to reduce donor site morbidity, Feng et al. introduced the concept of the free-style puzzle flap, in which a previously harvested flap becomes its own donor site by recycling the perforator. However, when a perforator cannot be found with a Doppler device, we suggest performing a new type of flap, the flip-flap puzzle flap, which combines two concepts: the free-style puzzle flap and the flip-flap flap described by Voche et al. in the 1990s. We present the cases of three patients who achieved complete healing through this procedure.
Extremities
;
Humans
;
Perforator Flap
;
Reconstructive Surgical Procedures
;
Recycling
;
Soft Tissue Injuries
;
Surgical Flaps
;
Tissue Donors
7.Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer
Je Yeong KO ; Eun Ji LEE ; Jong Hoon PARK
Biomolecules & Therapeutics 2019;27(4):337-341
Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.
Autophagy
;
Cilia
;
Homeostasis
;
Humans
;
Recycling
;
Signal Transduction
8.Effect on 12-week Intensive Dietary and Exercise Program on Weight Reduction and Maintenance in Obese Women with Weight Cycling History.
Ha Nui KWON ; Sang Seok NAM ; Yoo Kyoung PARK
Clinical Nutrition Research 2017;6(3):183-197
This study examined the effect of 12-week intensive dietary and exercise intervention program on body composition and stress-related hormones in obese women and to examine the residual effect after the intervention. The participants of this study were 30 obese women who had a body mass index of over 25 kg/m² and over 30% in body fat. They were classified into 2 groups depending on the history of weight cycling (WC); the WC group (≥±5% of the original body weight) and the non-weight cycling (NWC) group. Both groups were subject to a nutritional intervention program every 2 weeks with a mandatory exercise intervention for 12 weeks. Thereafter, the nutrition/exercise interventions were ceased for 12 weeks, after which the participants' levels of the hormones relating to energy metabolism and stress, meal intakes, dietary habits, level of knowledge on sodium intake, frequency of sodium intake, and quality of life (QOL) were checked. The changes of body weight were 71.3 ± 5.5 kg (week 0) vs. 65.0 ± 6.6 kg (week 12) vs. 65.6 ± 7.1 kg (week 24) in WC group and 71.6 ± 8.6 kg (week 0) vs. 68.8 ± 9.7 kg (week 12) vs. 70.3 ± 9.4 kg (week 24) in the NWC group. The levels of hormones, meal intakes, and QOL scores were better in the WC group, as adherence to the nutritional intervention was higher. We suggest that that adherence to dietary habits heavily influences weight loss and maintenance in individuals who frequently attempt to lose weight and consequently go through a vicious cycle of weight recycling.
Adipose Tissue
;
Body Composition
;
Body Mass Index
;
Body Weight
;
Energy Metabolism
;
Female
;
Food Habits
;
Humans
;
Meals
;
Obesity
;
Quality of Life
;
Recycling
;
Sodium
;
Weight Loss*
9.Effects of recycling on the biomechanical characteristics of retrieved orthodontic miniscrews.
Soon Dong YUN ; Sung Hwan CHOI ; Jung Yul CHA ; Hyung Seog YU ; Kwang Mahn KIM ; Jin KIM ; Chung Ju HWANG
The Korean Journal of Orthodontics 2017;47(4):238-247
OBJECTIVE: The aim of this study was to compare recycled and unused orthodontic miniscrews to determine the feasibility of reuse. The comparisons included both miniscrews with machined surfaces (MS), and those with etched surfaces (ES). METHODS: Retrieved MS and ES were further divided into three subgroups according to the assigned recycling procedure: group A, air-water spray; group B, mechanical cleaning; and group C, mechanical and chemical cleaning. Unused screws were used as controls. Scanning electron microscopy, energy-dispersive X-ray spectrometry, insertion time and maximum insertion torque measurements in artificial bone, and biological responses in the form of periotest values (PTV), bone–implant contact ratio (BIC), and bone volume ratio (BV) were assessed. RESULTS: Morphological changes after recycling mainly occurred at the screw tip, and the cortical bone penetration success rate of recycled screws was lower than that of unused screws. Retrieved ES needed more thorough cleaning than retrieved MS to produce a surface composition similar to that of unused screws. There were no significant differences in PTV or BIC between recycled and unused screws, while the BV of the former was significantly lower than that of the latter (p < 0.05). CONCLUSIONS: These results indicate that reuse of recycled orthodontic miniscrews may not be feasible from the biomechanical aspect.
Microscopy, Electron, Scanning
;
Recycling*
;
Spectrum Analysis
;
Torque
10.Plagiarism in the Context of Education and Evolving Detection Strategies.
Armen Yuri GASPARYAN ; Bekaidar NURMASHEV ; Bakhytzhan SEKSENBAYEV ; Vladimir I TRUKHACHEV ; Elena I KOSTYUKOVA ; George D KITAS
Journal of Korean Medical Science 2017;32(8):1220-1227
Plagiarism may take place in any scientific journals despite currently employed anti-plagiarism tools. The absence of widely acceptable definitions of research misconduct and reliance solely on similarity checks do not allow journal editors to prevent most complex cases of recycling of scientific information and wasteful, or ‘predatory,’ publishing. This article analyses Scopus-based publication activity and evidence on poor writing, lack of related training, emerging anti-plagiarism strategies, and new forms of massive wasting of resources by publishing largely recycled items, which evade the ‘red flags’ of similarity checks. In some non-Anglophone countries ‘copy-and-paste’ writing still plagues pre- and postgraduate education. Poor research management, absence of courses on publication ethics, and limited access to quality sources confound plagiarism as a cross-cultural and multidisciplinary phenomenon. Over the past decade, the advent of anti-plagiarism software checks has helped uncover elementary forms of textual recycling across journals. But such a tool alone proves inefficient for preventing complex forms of plagiarism. Recent mass retractions of plagiarized articles by reputable open-access journals point to critical deficiencies of current anti-plagiarism software that do not recognize manipulative paraphrasing and editing. Manipulative editing also finds its way to predatory journals, ignoring the adherence to publication ethics and accommodating nonsense plagiarized items. The evolving preventive strategies are increasingly relying on intelligent (semantic) digital technologies, comprehensively evaluating texts, keywords, graphics, and reference lists. It is the right time to enforce adherence to global editorial guidance and implement a comprehensive anti-plagiarism strategy by helping all stakeholders of scholarly communication.
Education*
;
Ethics
;
Information Storage and Retrieval
;
Plagiarism*
;
Publications
;
Recycling
;
Retraction of Publication as Topic
;
Scientific Misconduct
;
Writing

Result Analysis
Print
Save
E-mail