1.Opportunities, challenges and suggestions for the development of plastic degradation and recycling under the context of circular bioeconomy.
Rui XU ; Fang CHEN ; Chenjun DING
Chinese Journal of Biotechnology 2023;39(5):1867-1882
At present, the negative impact caused by white pollution has spread to all aspects of human society economy, ecosystem, and health, which causes severe challenges for developing the circular bioeconomy. As the largest plastic production and consumption country in the world, China has shouldered an important responsibility in plastic pollution control. In this context, this paper analyzed the relevant strategies of plastic degradation and recycling in the United States, Europe, Japan and China, measured the literature and patents in this field, analyzed the status quo of technology from the perspective of research and development trends, major countries, major institutions, and discussed the opportunities and challenges faced by the development of plastic degradation and recycling in China. Finally, we put forward future development suggestions which include the integration of policy system, technology path, industry development and public cognition.
Humans
;
Plastics
;
Ecosystem
;
Environmental Pollution
;
Recycling
;
Policy
2.Advances in microbial degradation of plastics.
Tongyao LIU ; Yi XIN ; Xingzhong LIU ; Bing WU ; Meichun XIANG
Chinese Journal of Biotechnology 2021;37(8):2688-2702
Plastics are widely used in daily life. Due to poor management and disposal, about 80% of plastic wastes were buried in landfills and eventually became land and ocean waste, causing serious environmental pollution. Recycling plastics is a desirable approach, but not applicable for most of the plastic waste. Microbial degradation offers an environmentally friendly way to degrade the plastic wastes, and this review summarizes the potential microbes, enzymes, and the underpinning mechanisms for degrading six most commonly used plastics including polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene and polyurethane. The challenges and future perspectives on microbial degradation of plastics were proposed.
Biodegradation, Environmental
;
Plastics
;
Polyurethanes
;
Recycling
3.The flip-flap puzzle flap: Another recycling option
Silvia GANDOLFI ; Raphael CARLONI ; Matthieu GILLERON ; Albane BONMARCHAND ; Isabelle AUQUIT-AUCKBUR
Archives of Plastic Surgery 2019;46(2):176-180
Post-traumatic soft tissue defects sometimes require sequential flap coverage to achieve complete healing. In the era of propeller flaps, which were developed to reduce donor site morbidity, Feng et al. introduced the concept of the free-style puzzle flap, in which a previously harvested flap becomes its own donor site by recycling the perforator. However, when a perforator cannot be found with a Doppler device, we suggest performing a new type of flap, the flip-flap puzzle flap, which combines two concepts: the free-style puzzle flap and the flip-flap flap described by Voche et al. in the 1990s. We present the cases of three patients who achieved complete healing through this procedure.
Extremities
;
Humans
;
Perforator Flap
;
Reconstructive Surgical Procedures
;
Recycling
;
Soft Tissue Injuries
;
Surgical Flaps
;
Tissue Donors
4.Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer
Je Yeong KO ; Eun Ji LEE ; Jong Hoon PARK
Biomolecules & Therapeutics 2019;27(4):337-341
Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.
Autophagy
;
Cilia
;
Homeostasis
;
Humans
;
Recycling
;
Signal Transduction
5.Worker Safety in the Rare Earth Elements Recycling Process From the Review of Toxicity and Issues
Seo Ho SHIN ; Hyun Ock KIM ; Kyung Taek RIM
Safety and Health at Work 2019;10(4):409-419
Although the rare earth elements (REEs) recycling industry is expected to increase worldwide in high-tech industry, regulations for worker safety have yet to be established. This study was conducted to understand the potential hazard/risk of REE recycling and to support the establishment of regulations or standards. We review the extensive literature on the toxicology, occupational safety, and health issues, and epidemiological surveys related to the REEs, and propose suitable management measures. REE recycling has four key steps such as collection, dismantling, separation, and processing. In these processes, hazardous substances, such as REEs-containing dust, metals, and chemicals, were used or occurred, including the risk of ignition and explosion, and the workers can be easily exposed to them. In addition, skin irritation and toxicities for respiratory, nervous, and cardiovascular systems with the liver toxicity were reported; however, more supplementary data are needed, owing to incompleteness. Therefore, monitoring systems concerning health, environmental impacts, and safety need to be established, based on additional research studies. It is also necessary to develop innovative and environment-friendly recycling technologies, analytical methods, and biomarkers with government support. Through these efforts, the occupational safety and health status will be improved, along with the establishment of advanced REE recycling industry.
Biomarkers
;
Cardiovascular System
;
Dust
;
Environmental Health
;
Explosions
;
Hazardous Substances
;
Liver
;
Metals
;
Occupational Health
;
Recycling
;
Skin
;
Social Control, Formal
;
Toxicology
6.Reader's Forum.
The Korean Journal of Orthodontics 2017;47(5):275-276
No abstract available.
Microscopy, Electron, Scanning
;
Recycling*
;
Spectrum Analysis
;
Torque
;
Sample Size
;
Research Design
;
Cortical Bone
7.Effect on 12-week Intensive Dietary and Exercise Program on Weight Reduction and Maintenance in Obese Women with Weight Cycling History.
Ha Nui KWON ; Sang Seok NAM ; Yoo Kyoung PARK
Clinical Nutrition Research 2017;6(3):183-197
This study examined the effect of 12-week intensive dietary and exercise intervention program on body composition and stress-related hormones in obese women and to examine the residual effect after the intervention. The participants of this study were 30 obese women who had a body mass index of over 25 kg/m² and over 30% in body fat. They were classified into 2 groups depending on the history of weight cycling (WC); the WC group (≥±5% of the original body weight) and the non-weight cycling (NWC) group. Both groups were subject to a nutritional intervention program every 2 weeks with a mandatory exercise intervention for 12 weeks. Thereafter, the nutrition/exercise interventions were ceased for 12 weeks, after which the participants' levels of the hormones relating to energy metabolism and stress, meal intakes, dietary habits, level of knowledge on sodium intake, frequency of sodium intake, and quality of life (QOL) were checked. The changes of body weight were 71.3 ± 5.5 kg (week 0) vs. 65.0 ± 6.6 kg (week 12) vs. 65.6 ± 7.1 kg (week 24) in WC group and 71.6 ± 8.6 kg (week 0) vs. 68.8 ± 9.7 kg (week 12) vs. 70.3 ± 9.4 kg (week 24) in the NWC group. The levels of hormones, meal intakes, and QOL scores were better in the WC group, as adherence to the nutritional intervention was higher. We suggest that that adherence to dietary habits heavily influences weight loss and maintenance in individuals who frequently attempt to lose weight and consequently go through a vicious cycle of weight recycling.
Adipose Tissue
;
Body Composition
;
Body Mass Index
;
Body Weight
;
Energy Metabolism
;
Female
;
Food Habits
;
Humans
;
Meals
;
Obesity
;
Quality of Life
;
Recycling
;
Sodium
;
Weight Loss*
8.Segregation for reduction of regulated medical waste in the operating room: a case report.
Helen Ki SHINN ; Youngyoen HWANG ; Byung Gun KIM ; Chunwoo YANG ; WonJu NA ; Jang Ho SONG ; Hyun Kyoung LIM
Korean Journal of Anesthesiology 2017;70(1):100-104
One-third of all hospital-regulated medical waste (RMW) comes from the operating room (OR), and it considerably consists of disposable packaging and wrapping materials for the sterilization of surgical instruments. This study sought to identify the amount and type of waste produced by ORs in order to reduce the RMW so as to achieve environmentally-friendly waste management in the OR. We performed an initial waste segregation of 4 total knee replacement arthroplasties (TKRAs) and 1 total hip replacement arthroplasty, and later of 1 extra TKRA, 1 laparoscopic anterior resection of the colon, and 1 pelviscopy (with radical vaginal hysterectomy), performed at our OR. The total mass of non-regulated medical waste (non-RMW) and blue wrap amounted to 30.5 kg (24.9%), and that of RMW to 92.1 kg (75.1%). In the course of the study, we noted that the non-RMW included recyclables, such as papers, plastics, cardboards, and various wrapping materials. The study showed that a reduction in RMW generation can be achieved through the systematic segregation of OR waste.
Arthroplasty
;
Arthroplasty, Replacement, Hip
;
Arthroplasty, Replacement, Knee
;
Colon
;
Medical Waste*
;
Operating Rooms*
;
Plastics
;
Product Packaging
;
Recycling
;
Sterilization
;
Surgical Instruments
;
Waste Management
9.Effects of recycling on the biomechanical characteristics of retrieved orthodontic miniscrews.
Soon Dong YUN ; Sung Hwan CHOI ; Jung Yul CHA ; Hyung Seog YU ; Kwang Mahn KIM ; Jin KIM ; Chung Ju HWANG
The Korean Journal of Orthodontics 2017;47(4):238-247
OBJECTIVE: The aim of this study was to compare recycled and unused orthodontic miniscrews to determine the feasibility of reuse. The comparisons included both miniscrews with machined surfaces (MS), and those with etched surfaces (ES). METHODS: Retrieved MS and ES were further divided into three subgroups according to the assigned recycling procedure: group A, air-water spray; group B, mechanical cleaning; and group C, mechanical and chemical cleaning. Unused screws were used as controls. Scanning electron microscopy, energy-dispersive X-ray spectrometry, insertion time and maximum insertion torque measurements in artificial bone, and biological responses in the form of periotest values (PTV), bone–implant contact ratio (BIC), and bone volume ratio (BV) were assessed. RESULTS: Morphological changes after recycling mainly occurred at the screw tip, and the cortical bone penetration success rate of recycled screws was lower than that of unused screws. Retrieved ES needed more thorough cleaning than retrieved MS to produce a surface composition similar to that of unused screws. There were no significant differences in PTV or BIC between recycled and unused screws, while the BV of the former was significantly lower than that of the latter (p < 0.05). CONCLUSIONS: These results indicate that reuse of recycled orthodontic miniscrews may not be feasible from the biomechanical aspect.
Microscopy, Electron, Scanning
;
Recycling*
;
Spectrum Analysis
;
Torque
10.Blockade of Trigeminal Glutamate Recycling Produces Anti-allodynic Effects in Rats with Inflammatory and Neuropathic Pain.
Kui Ye YANG ; Min Kyung LEE ; Min Kyoung PARK ; Jo Young SON ; Jin Sook JU ; Dong Kuk AHN
International Journal of Oral Biology 2017;42(3):129-135
The present study investigated the role of spinal glutamate recycling in the development of orofacial inflammatory pain or trigeminal neuropathic pain. Experiments were carried out on male Sprague-Dawley rats weighing between 230 and 280 g. Under anesthesia, a polyethylene tube was implanted in the atlanto-occipital membrane for intracisternal administration. IL-1β-induced inflammation was employed as an orofacial acute inflammatory pain model. IL-1β (10 ng) was injected subcutaneously into one vibrissal pad. We used the trigeminal neuropathic pain animal model produced by chronic constriction injury of the infraorbital nerve. DL-threo-β -benzyloxyaspartate (TBOA) or methionine sulfoximine (MSO) was administered intracisternally to block the spinal glutamate transporter and the glutamine synthetase activity in astroglia. Intracisternal administration of TBOA produced mechanical allodynia in naïve rats, but it significantly attenuated mechanical allodynia in rats with interleukin (IL)-1 β-induced inflammatory pain or trigeminal neuropathic pain. In contrast, intracisternal injection of MSO produced anti-allodynic effects in rats treated with IL-1β or with infraorbital nerve injury. Intracisternal administration of MSO did not produce mechanical allodynia in naive rats. These results suggest that blockade of glutamate recycling induced pro-nociception in naïve rats, but it paradoxically resulted in anti-nociception in rats experiencing inflammatory or neuropathic pain. Moreover, blockade of glutamate reuptake could represent a new therapeutic target for the treatment of chronic pain conditions.
Amino Acid Transport System X-AG
;
Anesthesia
;
Animals
;
Astrocytes
;
Chronic Pain
;
Constriction
;
Glutamate-Ammonia Ligase
;
Glutamic Acid*
;
Humans
;
Hyperalgesia
;
Inflammation
;
Interleukins
;
Male
;
Membranes
;
Methionine Sulfoximine
;
Models, Animal
;
Neuralgia*
;
Polyethylene
;
Rats*
;
Rats, Sprague-Dawley
;
Recycling*

Result Analysis
Print
Save
E-mail