1.Preparation and identification of monoclonal antibodies against cat allergen Fel d 1.
Linying CAI ; Zichen ZHANG ; Zhuangli BI ; Shiqiang ZHU ; Miao ZHANG ; Yiming FAN ; Jingjie TANG ; Aoxing TANG ; Huiwen LIU ; Yingying DING ; Chen LI ; Yingqi ZHU ; Guijun WANG ; Guangqing LIU
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):348-354
Objective Currently, there is no commercially available quantitative detection kit for the main Felis domestic allergen (Fel d 1) in China. To establish a rapid detection method for Fel d 1, this study aims to prepare monoclonal antibodies against Fel d 1 protein. Methods The codon preference of Escherichia coli was utilized to optimize and synthesize the Fel d 1 gene. The prokaryotic expression plasmid pET-28a-Fel d 1 was constructed and used to express and purify the recombinant Fel d 1 protein. Subsequently, the recombinant protein was immunized into BALB/c mice and monoclonal antibodies (mAbs) were prepared by the hybridoma technique. An indirect ELISA was established using the recombinant Fel d 1 as the coating antigen, and hybridoma cell lines were screened for positive clones. The specificity and antigenic epitopes of the mAbs were confirmed by Western blot analysis. Finally, the selected hybridoma cells were injected into the peritoneal cavities of BALB/c mice for large-scale monoclonal antibody production. Results The recombinant plasmid pET-28a-Fel d 1 was successfully constructed, and soluble Fel d 1 protein was obtained after optimizing the expression conditions. Western blot and antibody titer assays confirmed the successful isolation of two hybridoma cell lines, 7D11 and 5H4, which stably secreted mAbs specific to Fel d 1. Antibody characterization revealed that the 5H4 mAb was of the IgG2a subtype and could recognize the amino acid region 105-163 of Fel d 1, while the 7D11 mAb was the IgG1 subtype and could recognize the amino acid region 1-59. Conclusion The high-purity recombinant Fel d 1 protein produced in this study provides a promising alternative for clinical immunotherapy of cat allergies. Furthermore, the monoclonal antibody prepared in this experiment lays a material foundation for the in-depth study of the biological function of Fel d 1 and the development of ELISA detection.
Animals
;
Antibodies, Monoclonal/biosynthesis*
;
Mice, Inbred BALB C
;
Cats
;
Mice
;
Allergens/genetics*
;
Glycoproteins/genetics*
;
Enzyme-Linked Immunosorbent Assay
;
Hybridomas/immunology*
;
Recombinant Proteins/genetics*
;
Female
;
Antibody Specificity
2.High expression of variable domain of heavy-chain antibodies in Expi293F cells with optimized signal peptide and codons.
Shuzhen TAN ; Hu DONG ; Songjia PAN ; Suyu MU ; Yongjie CHEN ; Yun ZHANG ; Shiqi SUN ; Huichen GUO
Chinese Journal of Biotechnology 2024;40(11):4219-4227
The variable domain of heavy-chain antibody (VHH) has been developed widely in drug therapy, diagnosis, and research. Escherichia coli is the most popular expression system for VHH production, whereas low bioactivity occurs sometimes. Mammalian cells are one of the most ideal hosts for VHH expression at present. To improve the yield of VHH in Expi293F cells, we optimized the signal peptide (SP) and codons of VHH. Firstly, the fusion protein VHH1-Fc was used to screen SPs. The SP IFN-α2 showed the highest secretion as quantified by enzyme-linked immunosorbent assay (ELISA). Subsequently, codon optimization by improving GC3 and GC content doubled the yield of VHH1 and kept its binding activity to Senecavirus A (SVA). Finally, the mean yields of other 5 VHHs that fused with SP IFN-α2 and codon-optimized were over 191.6 mg/L, and these VHHs had high recovery and high purity in the culture supernatant. This study confirms that SP IFN-α2 and codon optimization could produce VHHs in Expi293F cells efficiently, which provides a reference for the large-scale production of VHHs.
Codon/genetics*
;
Protein Sorting Signals/genetics*
;
Escherichia coli/metabolism*
;
Humans
;
Recombinant Fusion Proteins/biosynthesis*
;
Interferon-alpha/metabolism*
;
Immunoglobulin Heavy Chains/immunology*
;
Cell Line
;
Immunoglobulin Variable Region/immunology*
3.Prokaryotic expression and purification of Chlamydomonas reinhardtii intraflagellar transport protein 46(IFT46) and preparation of polyclonal antibody.
Haiyue REN ; Bin DONG ; Zhenchuan FAN ; Demei MENG
Chinese Journal of Biotechnology 2016;32(8):1124-1132
IFT46 is one of the important components of intraflagellar transport complex B in Chlamydomonas reinhardtii, and plays important roles in the assembly, movement and perception of ciliary. To study its functional mechanism, a GST-tagged and an MBP-tagged prokaryotic expression plasmid, pGEX-2T-ift46 and pMAL-C2X-ift46 were constructed, respectively, by inserting ift46 into the pGEX-2T and pMAL-C2X vector, and then transformed into Escherichia coli BL21 (DE3) for protein expression. SDS-PAGE (15%) analysis results showed that the molecular weights of the fusion protein GST-IFT46 and MBP-IFT46 were 70 kDa and 86 kDa, respectively. We used the fusion protein GST-IFT46 purified by affinity adsorption purification (more than 95% purity) for immunity to New Zealand white rabbits. The 5th immune serum was collected and the antibody titer was determined to be 256 000 by ELISA. The antiserum was purified by Protein A affinity adsorption purification and immobilized MBP-IFT46 purification, and the specificity of polyclonal antibodies was evaluated by Western blotting and immunofluorescence. Results showed that the polyclonal antibody prepared could specifically and precisely bind IFT46 in C. reinhardtii, and IFT46 was mainly concentrated at basal body regions and few localized along the entire length of the flagellum as punctuated dots, which will make a foundation to further study the mechanism of IFT46 in cilia related diseases such as obesity, diabetes and polycystic kidney disease.
Algal Proteins
;
biosynthesis
;
immunology
;
Animals
;
Antibodies
;
chemistry
;
Blotting, Western
;
Chlamydomonas reinhardtii
;
chemistry
;
genetics
;
Electrophoresis, Polyacrylamide Gel
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Fluorescent Antibody Technique
;
Intracellular Signaling Peptides and Proteins
;
biosynthesis
;
immunology
;
Plasmids
;
Rabbits
;
Recombinant Fusion Proteins
;
biosynthesis
4.Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.
Kyoung Yong JEONG ; Mina SON ; June Yong LEE ; Kyung Hee PARK ; Jae Hyun LEE ; Jung Won PARK
Journal of Korean Medical Science 2016;31(1):18-24
Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.
Adolescent
;
Adult
;
Allergens/*chemistry/*immunology
;
Amino Acid Sequence
;
Animals
;
Bombyx/*chemistry/genetics/growth & development/*immunology
;
Epitopes/immunology
;
Female
;
Food Hypersensitivity/etiology
;
Glycoproteins/*chemistry/genetics/*immunology
;
Hot Temperature
;
Humans
;
Immunoglobulin E/immunology
;
Male
;
Molecular Sequence Data
;
Molecular Weight
;
Proteomics
;
Pupa/chemistry/immunology
;
Recombinant Proteins/biosynthesis/chemistry/immunology
;
Sequence Alignment
5.Immunogenicity and heterologous protection in mice with a recombinant adenoviral-based vaccine carrying a hepatitis C virus truncated NS3 and core fusion protein.
Jie GUAN ; Yao DENG ; Hong CHEN ; Yang YANG ; Bo WEN ; Wenjie TAN
Chinese Journal of Virology 2015;31(1):7-13
To develop a safe and broad-spectrum effective hepatitis C virus (HCV) T cell vaccine,we constructed the recombinant adenovirus-based vaccine that carried the hepatitis C virus truncated NS3 and core fusion proteins. The expression of the fusion antigen was confirmed by in vitro immunofluorescence and western blotting assays. Our results indicated that this vaccine not only stimulated antigen-specific antibody responses,but also activated strong NS3-specific T cell immune responses. NS3-specific IFN-γ+ and TNF-α+ CD4+ T cell subsets were also detected by a intracellular cytokine secretion assay. In a surrogate challenge assay based on a recombinant heterologous HCV (JFH1,2a) vaccinia virus,the recombinant adenovirus-based vaccine was capable of eliciting effective levels of cross-protection. These findings have im- portant implications for the study of HCV immune protection and the future development of a novel vaccine.
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
CD4-Positive T-Lymphocytes
;
immunology
;
Cross Protection
;
Female
;
Genetic Vectors
;
biosynthesis
;
genetics
;
Hepacivirus
;
genetics
;
immunology
;
Hepatitis C
;
immunology
;
prevention & control
;
virology
;
Humans
;
Interferon-gamma
;
immunology
;
Mice
;
Mice, Inbred BALB C
;
Recombinant Proteins
;
administration & dosage
;
genetics
;
immunology
;
Viral Core Proteins
;
administration & dosage
;
genetics
;
immunology
;
Viral Hepatitis Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Viral Nonstructural Proteins
;
administration & dosage
;
genetics
;
immunology
6.Investigation of a special neutralizing epitope of HEV E2s.
Min YOU ; Lu XIN ; Yi YANG ; Xiao ZHANG ; Yingwei CHEN ; Hai YU ; Shaowei LI ; Jun ZHANG ; Zhiqiang AN ; Wenxin LUO ; Ningshao XIA
Protein & Cell 2014;5(12):950-953
Antibodies, Monoclonal
;
chemistry
;
immunology
;
Antigens, Viral
;
chemistry
;
genetics
;
immunology
;
Binding Sites
;
Capsid Proteins
;
chemistry
;
genetics
;
immunology
;
Epitopes
;
chemistry
;
genetics
;
immunology
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Hepatitis E
;
immunology
;
prevention & control
;
virology
;
Hepatitis E virus
;
chemistry
;
immunology
;
Humans
;
Molecular Docking Simulation
;
Mutagenesis, Site-Directed
;
Peptide Mapping
;
Protein Binding
;
Recombinant Proteins
;
chemistry
;
genetics
;
immunology
;
Viral Hepatitis Vaccines
;
administration & dosage
;
biosynthesis
7.Expression of human retinol-binding protein 4 in insect baculovirus system and preparation of its polyclonal antibody.
Yuying REN ; Dan CHEN ; Yuzheng GUO ; Hongna SHI ; Juan LIU ; Jingyang BAN ; Yaning LIU ; Xiaofang WU ; Weilong WANG ; Hai CHENG ; Dingfeng LI ; Yong LIU ; Liliang WANG
Chinese Journal of Biotechnology 2013;29(7):974-985
To prepare recombinant human retinol binding protein 4 (RBP4) by using the baculovirus expression system and to detect its immunogenicity, the fusion DNA fragment of secretory signal peptide SS64 and human RBP4 gene was subcloned into a baculovirus transfer vector pFastBac-dual(pFBd), and the corresponding recombinant transfer plasmid was transformed into E. coli strain DH10bac, after transposition recombinant shuttle bacmid was screened out. The logarithmic phase Sf9 cells were transfected with the recombinant bacmid and then the recombinant baculovirus containing hRBP4 expression box were generated. After amplification of recombinant baculovirus, the recombinant baculovirus seeds were obtained. To express human RBP4, logarithmic phase Sf9 cells were infected with the virus seeds and SDS-PAGE and Western blotting were used to detect and identify the expression. Finally, to prepare a batch of RBP4 protein, logarithmic phase Sf9 cells in suspension culture were infected with recombinant baculovirus seeds and the supernatant was harvested after 120 hours post-infection for purification. Finally for preparation of polyclonal antibody and evaluation of immunogenicity, the recombinant hRBP4 from insect cells and from E. coli were immunized rabbits. Restriction enzyme digestion and sequencing confirmed that the recombinant baculovirus transfer plasmid was constructed correctly, and subsequently recombinant RBP4-bacmid was generated successfully. SDS-PAGE and Western blotting analysis suggested that human RBP4 protein was highly expressed in Sf9 cells with the molecular weight of approximately 23 kDa. The recombinant RBP4 protein could be secreted into the medium efficiently, and the expression level was calculated amount of 100 mg/L. Finally the rabbit antiserum was harvested after recombinant RBP4 immunization, therein the titer of antiserum against baculovirus recombinant RBP4 is 1:100 000 whereas the titer of antiserum against E. coli recombinant RBP4 is only 1:10 000. Overall, human RBP4 was high efficiently expressed successfully with good antigenicity in baculovirus system, and high affinity antiserum was obtained. A solid foundation was laid for the next step of the preparation of human serum RBP4 detection kit.
Animals
;
Baculoviridae
;
genetics
;
Blotting, Western
;
Cloning, Molecular
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli
;
Genetic Vectors
;
Humans
;
Immune Sera
;
Insecta
;
Rabbits
;
Recombinant Proteins
;
biosynthesis
;
immunology
;
Retinol-Binding Proteins, Plasma
;
biosynthesis
;
immunology
;
Sf9 Cells
;
metabolism
;
Transfection
8.Expression and identification of truncated Nsp7 protein of North American and Europe genotype porcine reproductive and respiratory syndrome virus.
Peng QIU ; Kun NING ; Lin CAI ; Qi LIU ; Baoyue WANG ; Xinyan ZHAI ; Xiuling YU ; Jianqiang NI ; Kegong TIAN
Chinese Journal of Biotechnology 2013;29(1):21-30
Porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein 7 (Nsp7) plays an important role in the induction of host humoral immune response and could serve as an ideal antigen for serological genotyping assay for PRRSV based on the significant difference in immunoreactivities of North American (NA) and European (EU) PRRSV Nsp7. In this study, Nsp7 of NA and EU PRRSVwas separately expressed and purified using prokaryotic expression system. The purified recombinant Nsp7 proteins reacted with serum antibodies against corresponding genotype PRRSV in Western blotting. However, nonspecific reaction of whole recombinant Nsp7 with antibodies against another genotype PRRSV was observed, indicating that whole NA PRRSV Nsp7 and EU PRRSV Nsp7 have similar antigenic epitopes and recombinant proteins could not be used for genotyping of antibodies against PRRSV. Based on the analysis of similar antigenic epitopes at the hydrophilic region of NA PRRSV Nsp7 and EU PRRSV Nsp7 by bioinformatics assessment, partial Nsp7 gene region deleted sequences encoding similar antigenic epitopes was constructed by fusion PCR. The recombinant truncated Nsp7 (NA-deltaNsp7 and EU-deltaNsp7, about 43 kDa) was expressed and the molecular weight was about 43 kDa. The results of Western blotting showed that NA-deltaNSP7 and EU-deltaNSP7 could be specifically recognized by positive serum to NA or EU PRRSV individually and nonspecific reaction was eliminated. This study provided a basis for further development of serological genotyping assay for North American and European genotype PRRSV infection.
Animals
;
Genotype
;
Porcine respiratory and reproductive syndrome virus
;
classification
;
genetics
;
immunology
;
Recombinant Proteins
;
biosynthesis
;
immunology
;
Swine
;
Viral Nonstructural Proteins
;
biosynthesis
;
immunology
9.Construction of the lentiviral expression vector for anti-p185(erbB2) mouse/human chimeric antibody.
Fang LIU ; Li LI ; Wei ZHANG ; Qi WANG
Journal of Biomedical Engineering 2013;30(2):347-354
This research was to construct the lentiviral expression vector for anti- p185(erbB2) mouse/human chimeric antibody and to determine the expression of the chimeric antibody gene in 293T cells transfected with this vector. The genes (vL and vH) coding light and heavy chain of variable regions of anti-p185(erbB2) mAb and the constant regions of human IgG1 (kappa and gamma1) were cloned with PCR method. The target genes were assembled by three-primers PCR method to obtain the chimeric light chain (L) and the chimeric heavy chain (H). Both chains inserted into the down stream and upper stream of IRES gene of the plasmid pVAX1/IRES respectively. We digested the plasmid pVAX1/ H-IRES-L with endoenzyme and subcloned H-IRES-L into the lentiviral vector pWPI. The enzyme digestion and sequence analysis showed that the lentiviral expression vector pWPI/H-IRES-L was constructed correctly. Then, it was transfected into 293T cells and after 48h, GFP protein expression in 293T cells were detected by fluorescent microscope and the chimeric antibody expression was detected by RT-PCR and direct ELISA. The results showed that after 293T cells were transfected with recombination plasmid, both light and heavy chains of the chimeric antibody genes could express together. The chimeric antibody expressed could bind to p185(erbB2) specifically. This research may lay a sound foundation for further study of anti-p185(erbB2) engineered antibody.
Animals
;
Antibodies, Monoclonal
;
biosynthesis
;
genetics
;
Cell Line
;
Chimera
;
Cloning, Molecular
;
Humans
;
Lentivirus
;
genetics
;
metabolism
;
Mice
;
Receptor, ErbB-2
;
biosynthesis
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
immunology
;
Transfection
10.Stable and efficient expression of hepatitis B virus S antigen and preS1 epitope fusion protein (S/preS1) in CHO cells.
Zhenxi YANG ; Shichong LI ; Hong LIU ; Miao ZHANG ; Lingling YE ; Yanzhuo WU ; Mingbo XU ; Zhaolie CHEN
Chinese Journal of Biotechnology 2013;29(12):1808-1816
Hepatitis B surface antigen (HBsAg) carrying preS sequences could be an ideal candidate for a new hepatitis B virus (HBV) vaccine with higher efficacy. Here we report the success in achieving efficient and stable expression of hepatitis B virus S antigen and preS1 epitope fusion protein (S/preS1) in CHO cells. The HMRCHEF53u/Neo-S/preS1 expression vector carrying S/preS1 gene was constructed and transfected into CHO-S cells. A stable and high-expression CHO cell line, named 10G6, was selected by ELISA and limiting dilution analysis. Western blotting analysis showed S/preS1 expressed from 10G6 cells possessed both S and preS1 antigenicity. 10G6 cells displayed characters of favorable growth and stable S/preS1 expression in repeated batch cultures as evaluated by viable cell density, viability and S/preS1 concentration. And cultivation of 10G6 cells in fed-batch mode resulted in S/preS1 production at 17-20 mg/L with viable cell density at 7 x 10(6)-10 x 10(6) cells/mL.
Animals
;
CHO Cells
;
Cricetulus
;
Epitopes
;
biosynthesis
;
genetics
;
Hepatitis B Surface Antigens
;
biosynthesis
;
genetics
;
immunology
;
Hepatitis B Vaccines
;
biosynthesis
;
genetics
;
Hepatitis B virus
;
Protein Precursors
;
biosynthesis
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Transfection

Result Analysis
Print
Save
E-mail