1.Baculovirus expression system-based expression of horseshoe crab factor C and its activity.
Lan LAN ; Huanlei LIU ; Hao NAN ; Sijun HE ; Wangcheng SONG ; Yunlong WANG ; Xinjuan FAN ; Xiangbo WAN ; Xiaodong XU
Chinese Journal of Biotechnology 2025;41(4):1428-1439
Endotoxins are common exogenous pyrogens. Excessive endotoxins in medical devices and injections can lead to serious consequences such as sepsis, septic shock, and even death. Therefore, endotoxin detection plays a crucial role in medical, pharmaceutical, and food sectors. The wide application of Limulus amebocyte lysate (LAL) has led to a sharp decline in the number of horseshoe crabs. Moreover, the LAL assay has limitations such as interbatch variations and difficulty in quantification. The recombinant factor C (rFC) assay is stable between batches, highly sensitive, and capable of quantitation, and thus it can be used as an alternative for the LAL assay. However, the high cost and complex procedures involved in producing recombinant factor C have limited the widespread application of this method. In order to simplify the preparation and reduce the production cost of recombinant factor C, this study focuses on the production of recombinant factor C based on the baculovirus expression system. Multiple measures such as a high-yield and anti-apoptotic vector qBac-IIIG, the optimal signal peptide, and the optimized codon were used to reach the goal of endotoxin detection with cell supernatant. This method simplifies the steps of protein purification. The sensitivity of the supernatant reached 0.05 EU/mL in a 1-L fermentation system, and 500 000 detecting reactions can be supported per liter of fermentation broth. This study increases the yield and activity of recombinant factor C, simplifies the procedures of protein purification, and reduces the cost, laying a foundation for the promotion and application of recombinant factor C in endotoxin detection.
Animals
;
Recombinant Proteins/genetics*
;
Horseshoe Crabs/chemistry*
;
Baculoviridae/metabolism*
;
Endotoxins/analysis*
;
Protein C/biosynthesis*
;
Genetic Vectors/genetics*
;
Arthropod Proteins/genetics*
;
Enzyme Precursors
;
Serine Endopeptidases
2.HPPR encodes the hydroxyphenylpyruvate reductase required for the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza.
Guo-Quan WANG ; Jun-Feng CHEN ; Bo YI ; He-Xin TAN ; Lei ZHANG ; Wan-Sheng CHEN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):917-927
Salvia miltiorrhiza is a medicinal plant widely used in the treatment of cardiovascular and cerebrovascular diseases. Hydrophilic phenolic acids, including rosmarinic acid (RA) and lithospermic acid B (LAB), are its primary medicinal ingredients. However, the biosynthetic pathway of RA and LAB in S. miltiorrhiza is still poorly understood. In the present study, we accomplished the isolation and characterization of a novel S. miltiorrhiza Hydroxyphenylpyruvate reductase (HPPR) gene, SmHPPR, which plays an important role in the biosynthesis of RA. SmHPPR contained a putative catalytic domain and a NAD(P)H-binding motif. The recombinant SmHPPR enzyme exhibited high HPPR activity, converting 4-hydroxyphenylpyruvic acid (pHPP) to 4-hydroxyphenyllactic acid (pHPL), and exhibited the highest affinity for substrate 4-hydroxyphenylpyruvate. SmHPPR expression could be induced by various treatments, including SA, GA, MeJA and Ag, and the changes in SmHPPR activity were correlated well with hydrophilic phenolic acid accumulation. SmHPPR was localized in cytoplasm, most likely close to the cytosolic NADPH-dependent hydroxypyruvate reductase active in photorespiration. In addition, the transgenic S. miltiorrhiza hairy roots overexpressing SmHPPR exhibited up to 10-fold increases in the products of hydrophilic phenolic acid pathway. In conclusion, our findings provide a new insight into the synthesis of active pharmaceutical compounds at molecular level.
Amino Acid Sequence
;
Benzofurans
;
Biosynthetic Pathways
;
genetics
;
Cinnamates
;
Depsides
;
Gene Expression Regulation, Plant
;
genetics
;
Oxidoreductases
;
genetics
;
Phenylpropionates
;
metabolism
;
Phenylpyruvic Acids
;
metabolism
;
Phylogeny
;
Plant Proteins
;
genetics
;
metabolism
;
Plant Roots
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Plants, Genetically Modified
;
Recombinant Proteins
;
analysis
;
biosynthesis
;
Salvia miltiorrhiza
;
chemistry
;
enzymology
;
genetics
;
metabolism
;
Sequence Alignment
3.Cost-effective production of protein by using cellulose-binding domain fusion tag in Corynebacterium glutamicum.
Zhijing ZHAO ; Huan JIANG ; Wenting SHEN ; Lianyan SONG ; Guang HU
Chinese Journal of Biotechnology 2013;29(5):691-694
The CBD gene from Trichoderma reesei was cloned into the Corynebacterium glutamicum secretion expression vector pXMJ19-sp, in which green fluorescent protein was inserted to obtain pXMJ19-sp-GFP-CBD. After induced by 0.5 mmol/L IPTG, GFP-CBD was expressed in Corynebacterium glutamicum at high level of 200 mg/L. The GFP-CBD could be purified to high purity with cellulose column. The results indicated CBD can be successfully used in Corynebacterium glutamicum expression system and thus offer an extremely simple, effective and scalable way for production of recombinant proteins.
Base Sequence
;
Cellulases
;
biosynthesis
;
genetics
;
Cellulose
;
chemistry
;
genetics
;
Cloning, Molecular
;
Corynebacterium glutamicum
;
genetics
;
metabolism
;
Cost-Benefit Analysis
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Protein Engineering
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Trichoderma
;
genetics
4.Expression and molecular evolution of recombinant acetylcholinesterase for detection of pesticide residues: a review.
Jiexian DONG ; Zhenfeng LI ; Hongtao LEI ; Yongsheng HE ; Hong WANG ; Yuanming SUN
Chinese Journal of Biotechnology 2012;28(5):557-564
Acetylcholinesterase (AChE) plays a key role in the pesticide determination. However, the extraction of AChE from natural materials has the disadvantages of low yield, complex purification and poor stability. Therefore, the preparation of recombinant AChE with high performance becomes the hot topic of researchers in recent years. In this article we summarize the progress in the expression of recombinant AChE and the improvement of its analytical characteristic. Finally, we point out that the directed evolution strategy combined with surface display technology is the future trend on improving recombinant AChE activity.
Acetylcholinesterase
;
biosynthesis
;
chemistry
;
genetics
;
Baculoviridae
;
genetics
;
metabolism
;
Cell Surface Display Techniques
;
Cholinesterase Inhibitors
;
analysis
;
Evolution, Molecular
;
Genetic Vectors
;
genetics
;
Pesticide Residues
;
analysis
;
Pichia
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
5.Construction and expression of bisbicistronic expression vector of novel endocrine and exocrine protein gene associated with breast cancer and IRES mediated gene EGFP.
Huamei YAN ; Yanping WANG ; Yu WANG ; Zhu WANG ; Hong ZHENG
Journal of Biomedical Engineering 2012;29(4):737-744
This experimental study was aimed to construct the recombinant bisbicistronic eukaryotic expression vector containing endocrine and exocrine protein (EECP) gene associated with breast cancer and enhanced green fluorescent protein (EGFP) gene. And then we transfected it into breast cancer cells MCF-7 to detect the expression of EECP protein and study preliminary biological function of EECP gene. The EECP sequence was cloned to pBluescript II SK (+) plasmid. After restriction endonuclease reaction of pBluescript II SK(+) plasmid, the EECP fragment was cloned to pIRES2-EGFP vector forming a recombinant eukaryotic expression vector named pEECP-IRES2-EGFP. The potential vector was identified by restriction endonuclease digestion and sequencing. Correct plasmid was extracted and transfected into breast cancer cells MCF-7. The expression of EECP protein was detected by western blot analysis. Its biological function was studied by MTT and Flow-cytometry. It turns out that the recombinant eukaryotic expression vector containing EECP gene and EGFP gene was constructed successfully, and it could transfect MCF-7 cells efficiently. It can get higher expression of EECP protein and higher cell proliferation, thus providing an important and convenient tool for studying the function of EECP gene in vitro and in vivo.
Base Sequence
;
Breast Neoplasms
;
genetics
;
pathology
;
Female
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
biosynthesis
;
genetics
;
Humans
;
MCF-7 Cells
;
Molecular Sequence Data
;
Proteins
;
analysis
;
genetics
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Ribosomes
;
chemistry
;
metabolism
6.Expression and utilization of 3AB nonstructural protein of foot-and-mouth disease virus in Escherichia coli.
Junjun SHAO ; Huiyun CHANG ; Tong LIN ; Guozheng CONG ; Junzheng DU ; Shandian GAO
Chinese Journal of Biotechnology 2011;27(2):180-184
To develop a sensitive and specific ELISA for detection of antibodies to the nonstructural protein of FMDV. We cloned and expressed FMDV nonstructural protein 3AB in Escherichia coli expression system. The recombinant protein 3AB was purified with Ni-NTA HisBind Resins and characterized by Western blotting. An indirect ELISA based on purified protein 3AB as a coating antigen was established. The specificity and sensitivity of this assay were evaluated by comparison with a commercial 3ABC-ELISA kit in detecion of serum samples. The results showed that the recombinant protein 3AB was expressed as a formation of inclusion bodies in Escherichia coli. The purified protein could specificially react with FMDV infection antibodies in Western blotting assay, but no reaction with the immune antibodies induced with vaccine. Two assays were no significant differences in specificity and sensitivity for detection of field samples (P>0.05). Therefore, we speculated that the recombinant protein 3AB is a promising molecular marker, which may effectively differentiate FMD-infected from vaccinated animals in a herd.
Animals
;
Antibodies, Viral
;
analysis
;
Antigens, Viral
;
biosynthesis
;
genetics
;
immunology
;
Cattle
;
Cattle Diseases
;
diagnosis
;
immunology
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
genetics
;
metabolism
;
Foot-and-Mouth Disease
;
diagnosis
;
immunology
;
Foot-and-Mouth Disease Virus
;
chemistry
;
genetics
;
isolation & purification
;
Genetic Vectors
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
Viral Nonstructural Proteins
;
biosynthesis
;
genetics
;
immunology
7.Molecular characterizations of two dehydroascorbate reductases from Selaginella moellendorffii.
Zishuo CHENG ; Ting LAN ; Di LI ; Hailing YANG ; Qingyin ZENG
Chinese Journal of Biotechnology 2011;27(1):76-84
Plant dehydroascorbate reductase (DHAR) is a physiologically important reducing enzyme in the ascorbate-glutathione recycling reaction. In this study, two DHARs genes (SmDHAR1 and SmDHAR2) were isolated from Selaginella moellendorffii. The SmDHAR1 and SmDHAR2 genes encode two proteins of 218 and 241 amino acid residues, with a calculated molecular mass of 23.97 kDa and 27.33 kDa, respectively. The genomic sequence analysis showed SmDHAR1 and SmDHAR2 contained five and six introns, respectively. Reverse transcription PCR revealed that the SmDHAR1 and SmDHAR2 were constitutive expression genes in S. moellendorffii. The recombinant SmDHAR1 and SmDHAR2 proteins were overexpressed in E. coli, and were purified by Ni-affinity chromatography. The recombinant SmDHAR1 showed 116-fold higher enzymatic activity towards the substrate dehydroascorbate than recombinant SmDHAR2. The recombinant SmDHAR1 showed higher thermal stability than recombinant SmDHAR2. These results indicated obvious functional divergence between the duplicate genes SmDHAR1 and SmDHAR2.
Amino Acid Sequence
;
Base Sequence
;
Cloning, Molecular
;
DNA, Plant
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Oxidoreductases
;
biosynthesis
;
chemistry
;
genetics
;
Plant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Selaginellaceae
;
enzymology
;
genetics
;
Sequence Analysis, DNA
8.Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis.
Wenqing CHEN ; Dongjing QU ; Lipeng ZHAI ; Meifeng TAO ; Yemin WANG ; Shuangjun LIN ; Neil P J PRICE ; Zixin DENG
Protein & Cell 2010;1(12):1093-1105
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11'-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.
Actinobacteria
;
enzymology
;
genetics
;
Base Sequence
;
Biological Assay
;
Carbohydrate Sequence
;
Carbohydrates
;
biosynthesis
;
genetics
;
Cloning, Molecular
;
Gene Deletion
;
Gene Library
;
High-Throughput Screening Assays
;
Molecular Sequence Data
;
Multigene Family
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Sequence Analysis, DNA
;
Streptomyces
;
enzymology
;
genetics
;
Tunicamycin
;
biosynthesis
;
chemistry
;
genetics
9.Cloning, expression and functional analyses of human platelet-derived growth factor-B chain peptide for wound repair of cat corneal endothelial cells.
Wen-Juan LUO ; Gui-Qiu ZHAO ; Chuan-Fu WANG ; Li-Mei WANG ; Xiao-Ji WANG
Chinese Journal of Traumatology 2009;12(1):31-37
OBJECTIVETo investigate the biological function of platelet-derived growth factor B (PDGF-B) on the survival and proliferation of cat corneal endothelial cells so as to provide bases for further studies of its role in wound repair and its clinical application.
METHODSTotal RNA was extracted from the placenta tissues of healthy pregnant women undergoing hysterotokotomy and PDGF cDNA was obtained with reverse transcription-polymerase chain reaction (RT-PCR). The prokaryotic expression vector pET-PDGF-B was constructed and expressed the recombinant PDGF-B in Escherichia coli (E. coli) BL21 (DE3). After purification and refolding on Ni2+-chelation affinity chromatography (NTA) column, it was used to culture cat corneal endothelial cells. Cell proliferation was tested by modified tertrazolium salt (MTT) and flow cytometer. And the morphologic change and the ultrastructure were observed under an inverted phase contrast microscope, a scanning electron microscope and a transmission electon microscope, respectively.
RESULTSPDGF-B chain peptide (PDGF-BB) gene was successfully inserted into the prokaryotic expression vector, pET-28a (+). The purified recombined protein pET-PDGF-B showed a single band on sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) with the molecular weight of about 27 u, which was in agreement with the deduced value. MTT and flow cytometry showed that PDGF-BB promoted the survival and proliferation of cat corneal endothelial cells.
CONCLUSIONSThe construction of recombinant prokaryotic expression vector pET-PDGF-B and the preparation of PDGF-BB protein provide a foundation for further study of the function of PDGF-BB and producing biological PDGF-BB protein. The expressed PDGF-BB promotes the proliferation of cultured cat corneal endothelial cells.
Animals ; Cats ; Cell Proliferation ; drug effects ; Cells, Cultured ; Cloning, Molecular ; Endothelium, Corneal ; cytology ; drug effects ; Humans ; Immunohistochemistry ; Phosphopyruvate Hydratase ; analysis ; Protein Folding ; Proto-Oncogene Proteins c-sis ; chemistry ; genetics ; pharmacology ; Recombinant Proteins ; biosynthesis ; isolation & purification ; pharmacology ; Wound Healing ; drug effects
10.Cloning, expression and characterization of mannanase from Armillariella tabescens EJLY2098 in Pichia pastoris.
Yanfeng WANG ; AdaHangHeng WONG ; Xiaokui HUANG ; Daling LIU ; Dongsheng YAO
Chinese Journal of Biotechnology 2009;25(6):920-926
We used reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) techniques to obtain the full-length cDNA of beta-mannanase (EC 3.2.1.78) from Armillariella tabescens EJLY2098 (an edible fungus). Sequence analysis of the 1481 bp full-length cDNA encoding 445 amino acid residues indicated that the gene contained two structural domains, cellulose-binding domains (CBD) and glycoside hydrolase family 5 (GHF5) domains, other than the conserved beta-mannanase domain. Thus, we classified this gene as a member of glycoside hydrolase family 5. Next, we cloned a 1308 bp fragment encoding the beta-mannanase mature peptide (re-atMAN47) into the expression vector pPICZalphaA and expressed it in Pichia pastoris. The yield was 440 mg/L. Enzyme activity reached a maximum of 1.067 IU/mL after 72 h of methanol induction. The re-atMAN47 had an optimal temperature of 60 degrees C and an optimal pH of 5.5. It manifested broad thermostability from 30 degrees C-65 degrees C, and was stable between pH 4.5-7.0. This study represents the first record of a beta-mannanase from Armillariella tabescens EJLY2098 and provides a new source of carbohydrate hydrolysis enzyme with good biosafety, thermostability and wide pH stability. It is a good approach for the industrial needs of feed, food and pharmaceutical manufacturers.
Armillaria
;
classification
;
enzymology
;
genetics
;
Cloning, Molecular
;
Enzyme Stability
;
Pichia
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Sequence Analysis, DNA
;
beta-Mannosidase
;
biosynthesis
;
chemistry
;
genetics

Result Analysis
Print
Save
E-mail