1.Biological activity and antitumor effect of long-acting recombinant human interleukin-2 drug.
Xuejun LIANG ; Fengxia ZHANG ; Ting JIN ; Jingjing ZHU
Journal of Peking University(Health Sciences) 2025;57(2):253-261
OBJECTIVE:
To investigate the biological activity and antitumor effect of pegylated recombinant human interleukin 2 (PEG-rhIL-2) obtained by site-specific conjugation of polyethylene glycol (PEG) with non-natural amino acids, and to explore its antitumor mechanism.
METHODS:
The binding activities of PEG-rhIL-2 at three different sites (T41, Y45, and V91) to human interleukin 2 receptors α (IL-2Rα) and β (IL-2Rβ) and were detected by surface plasmon resonance (SPR) technology. Western blot was used to detect the levels of the Janus kinase-signal transducer and activator of transcription 5 (JAK-STAT5) signaling pathway activated by different doses of rhIL-2 and PEG-rhIL-2 in CTTL-2 and YT cells. Blood was collected after a single administration in mice to detect the drug concentration at different time points and evaluate the pharmacokinetic parameters of Y45-PEG-rhIL-2. Mouse hepatoma cell line Hepa1-6, pancreatic cancer cell line Pan-02, and colon cancer cell line MC-38 were selected. Tumor models were constructed in C57BL/6 mice. Different doses of Y45-PEG-rhIL-2 and excipient control were administrated respectively to evaluate the tumor suppression effect of the drug. In the MC-38 colon cancer model, the tumor suppression effect of Y45-PEG-rhIL-2 combined with anti-programmed death-1 (PD-1) monoclonal antibody was evaluated. Hepa1-6 mouse tumor models were constructed and rhIL-2, Y45-rhIL-2 and Y45-PEG-rhIL-2 were administrated respectively. The proportion of tumor-infiltrating lymphocytes was analyzed by flow cytometry.
RESULTS:
The SPR detection results showed that the binding activities of PEG-rhIL-2 to IL-2Rα/IL-2Rβ were both reduced. The affinity of Y45-PEG-rhIL-2 to IL-2Rα was reduced to approximately 1/250, and its affinity to IL-2Rβ was reduced to 1/3. Western blot results showed that the activity of Y45-PEG-rhIL-2 in stimulating JAK-STAT5 signaling in CTLL-2 cells expressing heterotrimeric IL-2 receptor complex IL-2Rαβγwas reduced to approximately 1/300, while its activity in YT cells expressing heterodimeric IL-2 receptor complex IL-2Rβγwas reduced to approximately 1/3. The pharmacokinetic evaluation after a single dose in the mice showed that the elimination half-life of Y45-PEG-rhIL-2 was 17.7 h. Y45-PEG-rhIL-2 has pharmacokinetic characteristics superior to those of rhIL-2. Y45-PEG-rhIL-2 showed dose-dependent tumor suppression activity, and the combination of Y45-PEG-rhIL-2 and anti-PD-1 antibody had a better tumor-inhibiting effect than the single use of Y45-PEG-rhIL-2 or anti-PD-1 antibody. Flow cytometry analysis demonstrated that 72 h after the administration of Y45-PEG-rhIL-2, the proportion of tumor-infiltrating cytotoxic T lymphocytes (CD8+T cells) increased by 86.84%. At 120 h after administration, the ratio of CD8+T cells to regulatory T cells (Treg) increased by 75.10%.
CONCLUSION
Y45-PEG-rhIL-2 obtained by site-specific conjugation via non-natural amino acids changed its receptor binding activity and inhibited tumor growth in dose-dependent manner in multiple tumor models by regulating CD8+T cells.
Interleukin-2/pharmacokinetics*
;
Animals
;
Mice
;
Humans
;
Recombinant Proteins/pharmacology*
;
Polyethylene Glycols/chemistry*
;
Cell Line, Tumor
;
Antineoplastic Agents/pharmacokinetics*
;
Signal Transduction/drug effects*
;
STAT5 Transcription Factor/metabolism*
;
Interleukin-2 Receptor alpha Subunit/metabolism*
;
Interleukin-2 Receptor beta Subunit/metabolism*
2.Investigation on the Role of Medical Recombinant Human-Derived Collagen Functional Dressings in Wound Healing.
Xiaoxiao GAI ; Xiaoxia SUN ; Wenqian MA ; Zhenhua LIN ; Xinyuan LI ; Chenghu LIU
Chinese Journal of Medical Instrumentation 2025;49(4):415-422
OBJECTIVE:
To investigate the biological effect of medical recombinant human-derived collagen functional dressings in wound healing.
METHODS:
MTT assay and RTCA assay were used to detect cell toxicity and proliferation. Scratch assay and Transwell cell migration assay were used to detect cell motility and migration ability. Enzyme-linked immunosorbent assay was used to detect the contents of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-endothelial cell adhesion molecule (CD31) in the supernatant of four types of cells. After animal surgery, the surgical wound was taken at 1 week, 4 weeks and 13 weeks, respectively, for hematoxylin eosin (HE) staining and immunohistochemistry to observe the inflammatory response and CD31 expression of the wound.
RESULTS:
Medical recombinant human-derived collagen functional dressing promotes cell proliferation and migration, enhances wound angiogenesis by upregulating the expression of VEGF, FGF, and CD31 in human dermal vascular endothelial cells (HDVEC) and human vascular endothelial cells (HVEC), thereby improving local blood supply to the wound, regulating the inflammatory response of the wound, and accelerating wound healing.
CONCLUSION
Recombinant type Ⅲ humanized collagen plays an important role in wound healing.
Humans
;
Wound Healing/drug effects*
;
Recombinant Proteins/pharmacology*
;
Animals
;
Cell Proliferation
;
Cell Movement
;
Collagen/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Bandages
;
Platelet Endothelial Cell Adhesion Molecule-1/metabolism*
;
Endothelial Cells
;
Fibroblast Growth Factors/metabolism*
3.Construction of novel transmembrane fusion antioxidant enzymes and their protective effect against hydrogen peroxide-mediated cellular oxidative damage.
Jianru PAN ; Ziyi ZHANG ; Jinnan CHU ; Yanan HAN ; Xueying ZHENG ; Shirong CAI ; Huocong HE
Chinese Journal of Biotechnology 2025;41(4):1547-1558
Reactive oxygen species (ROS) are major contributors to radiation therapy-induced side effects in cancer patients. A fusion antioxidant enzyme comprising glutathione S-transferase (GST), superoxide dismutase 1 (SOD1), and a transmembrane peptide has been shown to effectively mitigate ROS-induced damage. To enhance its targeting capability, the fusion protein was further modified by incorporating a matrix metalloproteinase-2/9 substrate peptide (X) and the transmembrane peptide R9, yielding the antioxidant enzyme GST-SOD1-X-R9 (GS1XR). This modification reduced its transmembrane ability in tumor cells, thereby selectively protecting normal cells from oxidative stress. However, the use of non-human GST poses potential immunogenicity risks. In this study, we employed seamless cloning technology to construct an expression vector containing the human GST gene to replace the non-human GST gene, and then expressed and purified novel fusion antioxidant enzymes GS1R and GS1XR. The protective effects of newly constructed GS1R and GS1XR against hydrogen peroxide (H2O2)-induced oxidative damage in L-02 cells were then evaluated using GS1 as a control. Enzymatic activity assays revealed that the specific activity of GST in GS1XR remained unchanged compared to the unmodified protein, while SOD activity was enhanced. Exposure to 200 μmol/L H₂O₂ transiently activated the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway; however, this activation diminished after 24 h, reducing cell viability to 48.4%. Both GS1R and GS1XR effectively scavenged intracellular ROS, directly counteracting oxidative stress and promoting Nrf2 nuclear translocation, thereby activating antioxidant pathways and restoring cell viability to normal levels. The two enzymes showed comparable efficacy. In contrast, GS1, lacking transmembrane capability, was restricted to scavenging extracellular ROS and provided only limited protection. In conclusion, both novel fusion antioxidant enzymes demonstrated significant potential in safeguarding normal cells from ROS-mediated oxidative damage. The findings provide a foundation for further investigation in related field.
Humans
;
Oxidative Stress/drug effects*
;
Hydrogen Peroxide
;
Antioxidants/metabolism*
;
Glutathione Transferase/metabolism*
;
Recombinant Fusion Proteins/pharmacology*
;
Superoxide Dismutase-1
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/biosynthesis*
4.Cloning and functional analysis of the phenylalanine ammonia-lyase gene from Anthoceros angustus.
Haina YU ; Jian MO ; Jiayi YANG ; Xiaochun QIN
Chinese Journal of Biotechnology 2025;41(7):2855-2870
Anthoceros angustus Steph. is rich in phenolic acids such as rosmarinic acid (RA). Phenylalanine ammonia-lyase (PAL) is an entry enzyme in the phenylpropanoid pathway of plants, playing an important role in the biosynthesis of RA. To investigate the important role of PAL in rosmarinic acid synthesis, two PAL genes (designated as AanPAL1 and AanPAL2) were cloned from A. angustus, encoding 755 and 753 amino acid residues, respectively. The AanPAL deduced amino acid sequences contain the conserved domains of PAL and the core active amino acid residues Ala-Ser-Gly. The phylogenetic analysis indicated that AanPAL1 and AanPAL2 were clustered with PALs from bryophytes and ferns and had the shortest evolutionary distance with the PALs from Physcomitrella patens. Quantitative real-time PCR results showed that the expression of AanPAL1 and AanPAL2 was induced by exogenous methyl jasmonate (MeJA). HPLC results showed that the MeJA treatment significantly increased the accumulation of RA. AanPAL1 and AanPAL2 were expressed in Escherichia coli and purified by histidine-tag affinity chromatography. The recombinant proteins catalyzed the conversion of L-phenylalanine to generate trans-cinnamic acid with high efficiency, with the best performance at 50 ℃ and pH 8.0. The Km and kcat of AanPAL1 were 0.062 mmol/L and 4.35 s-1, and those of AanPAL2 were 0.198 mmol/L and 14.48 s-1, respectively. The specific activities of AanPAL1 and AanPAL2 were 2.61 U/mg and 8.76 U/mg, respectively. The two enzymes had relatively poor thermostability but good pH stability. The high activity of AanPAL2 was further confirmed via whole-cell catalysis with recombinant E. coli, which could convert 1 g/L L-phenylalanine into trans-cinnamic acid with a yield of 100% within 10 h. These results give insights into the regulatory role of AanPAL in the biosynthesis of RA in A. angustus and provide candidate enzymes for the biosynthesis of cinnamic acid.
Phenylalanine Ammonia-Lyase/metabolism*
;
Cloning, Molecular
;
Cinnamates/metabolism*
;
Recombinant Proteins/metabolism*
;
Rosmarinic Acid
;
Depsides/metabolism*
;
Escherichia coli/metabolism*
;
Amino Acid Sequence
;
Plant Proteins/metabolism*
;
Phylogeny
;
Acetates/pharmacology*
;
Cyclopentanes
;
Oxylipins
5.Effects of blocking apoptosis and lactic acid metabolism pathways on robustness and foreign protein expression of CHO cells.
Hong LU ; Tongyang ZHANG ; Ruofei LYU ; Bolin HOU ; Tingwen FAN ; Huaiyi YANG ; Jie NA
Chinese Journal of Biotechnology 2025;41(8):3098-3109
The Chinese hamster ovary (CHO) cell is the most representative mammalian cell protein expression system, and it is widely used in recombinant protein, vaccine and other biopharmaceutical fields. However, due to its vulnerability to environmental factors, apoptosis, and metabolic inhibitors, CHO cells demonstrate poor robustness, and thus the integrated viable cell density and unit cell productivity are largely limited. To improve the robustness and foreign protein expression efficiency of CHO cells, we employed CRISPR/Cas9 to knock out the apoptosis genes Bax and Bak and the lactate dehydrogenase gene LDHa, thereby blocking apoptosis and lactic acid metabolism pathways. The results of apoptosis and single cell viability detection showed that the number of apoptotic cells in the knockout cell lines Bax-/-, Bax-bak-/-, and LDHa-Bax-bak-/- was reduced by 22.51%, 37.73%, and 64.12%, respectively, compared with the wild-type cell line CHO-K1, which indicated that the anti-apoptotic ability was significantly improved. After staurosporine treatment, the single cell viability of Bax-/-, Bax-bak-/-, and LDHa-Bax-bak-/- cells was increased by 30.8%, 22%, and 41.1%, respectively. After treatment with puromycin, the single cell viability of Bax-/-, Bax-bak-/-, and LDHa-Bax-bak-/- cells was increased by 26.7%, 30.7%, and 38.8%, respectively. To further investigate the production performance of cells obtained after blocking apoptosis and lactic acid metabolism pathways, we induced transient expression of human tissue plasminogen activator (tPA) in these cells. The results showed that the secretion of tPA in Bax-/-, Bax-Bak-/-, and LDHa-Bax-Bak-/- cells was 11.12%, 46.18%, and 63.13%, respectively, higher than that in wild-type CHO-K1 cells. The expression of intracellular tPA was increased by 35.65%, 130%, and 192.15%. In conclusion, blocking apoptosis and lactic acid metabolism pathways simultaneously can improve cell robustness and productivity, with the performance better than blocking the apoptosis pathway alone. The above results indicated that the constructed cell lines were expected to be the delivery carriers of protein drugs such as medicinal peptides, and better used for the treatment of diseases.
CHO Cells
;
Cricetulus
;
Animals
;
Apoptosis/genetics*
;
Lactic Acid/metabolism*
;
Recombinant Proteins/biosynthesis*
;
L-Lactate Dehydrogenase/genetics*
;
bcl-2-Associated X Protein/genetics*
;
bcl-2 Homologous Antagonist-Killer Protein/genetics*
;
Cricetinae
;
CRISPR-Cas Systems
;
Staurosporine/pharmacology*
6.Construction and biological activity of metallothionein fused with ELP.
Longying LIU ; Tingting WANG ; Wei YU ; Simeng XU ; Xianlong YE
Chinese Journal of Biotechnology 2024;40(11):4242-4253
Metallothionein (MT) plays a significant role in heavy metal removal, antioxidant defense, and immune regulation. The current predominant approach for obtaining natural MT is extraction from tissue, which often entails complex procedures resulting in limited yields. In recent years, researchers have adopted the strategy of fusing labels such as GST or His for the heterologous expression of MT. However, a challenge in industrial production arises from the subsequent removal of these labels, which often leads to a significant reduction in the yield. The fusion with elastin-like polypeptides (ELPs) offers a promising solution for achieving soluble expression of the target protein, while providing a simple and fast purification process. In this study, ELP was fused with MT, which significantly up-regulated the soluble expression of MT. The fusion protein ELP-MT with the purity above 97% was obtained efficiently and simply by inverse transition cycling (ITC). ELP-MT exhibited a remarkable 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) scavenging activity, with the half maximal inhibitory concentration (IC50) of 0.77 μmol/L, which was 53.7 times that of the vitamin E derivative Trolox. In addition, the fusion protein demonstrated strong 1,1-diphenyl-2-trinitrohydrazine (DPPH) scavenging ability. Furthermore, ELP-MT had no toxicity to the proliferation and promoted the adhesion and migration of NIH/3T3 cells. All these results indicated that ELP-MT had good biocompatibility. We constructed the fusion protein ELP-MT combining the unique properties of MT and elastin, laying a technical foundation for the large-scale production of recombinant MT and facilitating the applications in food, health supplement, and cosmetic industries.
Metallothionein/metabolism*
;
Elastin/chemistry*
;
Recombinant Fusion Proteins/pharmacology*
;
Mice
;
Animals
;
Peptides/metabolism*
;
Escherichia coli/metabolism*
;
NIH 3T3 Cells
7.Recombinant porcine interferon-gamma expressed in CHO cells and its antiviral activity.
Lingyun WANG ; Rongzeng HAO ; Yang YANG ; Yajun LI ; Bingzhou LU ; Yuhan MAO ; Yue ZHANG ; Zhenli GONG ; Yanhong LIU ; Meng QI ; Yi RU ; Haixue ZHENG
Chinese Journal of Biotechnology 2023;39(12):4784-4795
The aim of this study was to produce recombinant porcine interferon gamma (rPoIFN-γ) by Chinese hamster ovarian (CHO) cells expression system and to analyze its antiviral activity. Firstly, we constructed the recombinant eukaryotic expression plasmid pcDNA3.1-PoIFN-γ and transfected into suspension cultured CHO cells for secretory expression of rPoIFN-γ. The rPoIFN-γ was purified by affinity chromatography and identified with SDS-PAGE and Western blotting. Subsequently, the cytotoxicity of rPoIFN-γ was analyzed by CCK-8 test, and the antiviral activity of rPoIFN-γ was evaluated using standard procedures in VSV/PK-15 (virus/cell) test system. Finally the anti-Seneca virus A (SVA) of rPoIFN-γ activity and the induction of interferon-stimulated genes (ISGs) and cytokines were also analyzed. The results showed that rPoIFN-γ could successfully expressed in the supernatant of CHO cells. CCK-8 assays indicated that rPoIFN-γ did not show cytotoxicity on IBRS-2 cells. The biological activity of rPoIFN-γ was 5.59×107 U/mg in VSV/PK-15 system. Moreover, rPoIFN-γ could induced the expression of ISGs and cytokines, and significantly inhibited the replication of SVA. In conclusion, the high activity of rPoIFN-γ was successfully prepared by CHO cells expression system, which showed strong antiviral activity on SVA. This study may facilitate the investigation of rPoIFN-γ function and the development of novel genetically engineered antiviral drugs.
Swine
;
Animals
;
Cricetinae
;
Interferon-gamma/pharmacology*
;
Cricetulus
;
CHO Cells
;
Sincalide
;
Recombinant Proteins/pharmacology*
;
Antiviral Agents/pharmacology*
8.Preparation of a recombinant tumor-targeting ribosome inactivating protein luffin-α-NGR and evaluation of its antitumor activity.
Zheyue ZHOU ; Xinyi JIANG ; Hongrui ZHANG ; Zhiguang HUANG ; Rui ZOU ; Qiuwen LOU ; Yu WANG ; Zhenhong ZHU
Chinese Journal of Biotechnology 2022;38(3):1138-1148
Loofah seeds ribosome inactivating protein luffin-α was fused with a tumor-targeting peptide NGR to create a recombinant protein, and its inhibitory activity on tumor cells and angiogenesis were assessed. luffin-α-NGR fusion gene was obtained by PCR amplification. The fusion gene was ligated with pGEX-6p-1 vector to create a recombinant plasmid pGEX-6p-1/luffin-α-NGR. The plasmid was transformed into E. coli BL21, and the target protein was isolated and purified by GST affinity chromatography. The luffin-α-NGR fusion gene with a full length of 849 bp was successfully obtained, and the optimal soluble expression of the target protein was achieved under the conditions of 16 ℃, 0.5 mmol/L IPTG after 16 h induction. SDS-PAGE and Western blotting confirmed the recombinant protein has an expected molecular weight of 56.6 kDa. Subsequently, the recombinant protein was de-tagged by precision protease digestion. The inhibitory effects of the recombinant protein on liver tumor cells HepG2 and breast cancer cells MDA-MB-231 were significantly stronger than that of luffin-α. The Transwell and CAM experiment proved that the recombinant protein luffin-α-NGR also had a significant inhibitory effect on tumor cells migration and neovascularization. The inhibitory activity on tumor cells and angiogenesis of the recombinant luffin-α-NGR protein lays a foundation for the development of subsequent recombinant tumor-targeting drugs.
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli/metabolism*
;
Plasmids
;
Recombinant Proteins/pharmacology*
;
Saporins/metabolism*
9.Expression, purification, and characterization of cell-permeable fusion antioxidant enzyme sensitive to matrix metalloproteinases-2/9.
Huocong HE ; Lixiang LIN ; Lingling LI ; Lunqiao WU ; Haiying LIN ; Jianru PAN
Chinese Journal of Biotechnology 2022;38(9):3515-3527
Antioxidant enzymes fused with cell-penetrating peptides could enter cells and protect cells from irradiation damage. However, the unselective transmembrane ability of cell-penetrating peptide may also bring antioxidant enzymes into tumor cells, thus protecting tumor cells and consequently reducing the efficacy of radiotherapy. There are active matrix metalloproteinase (MMP)-2 or MMP-9 in most tumor cellular microenvironments. Therefore, a fusion protein containing an MMP-2/9 cleavable substrate peptide X, a cell-penetrating peptide R9, a glutathione S-transferase (GST), and a human Cu, Zn superoxide dismutase (SOD1), was designed and named GST-SOD1-X-R9. In the tumor microenvironment, GST-SOD1-X-R9 would lose its cell-penetrating peptide and could not enter tumor cells due to the cleavage of substrate X by active MMP-2/9, thereby achieving selected entering normal cells. The complete nucleotide sequence of SOD1-X-R9 was synthesized and inserted into the prokaryotic expression vector pGEX-4T-1. The pGEX4T-1-SOD1-X-R9 recombinant plasmid was obtained, and soluble expression of the fusion protein was achieved. GST-SOD1-X-R9 was purified by ammonium sulfate precipitation and GST affinity chromatography. The molecular weight of the fusion protein was approximately 47 kDa, consistent with the theoretical value. The SOD and GST activities were 2 954 U/mg and 328 U/mg, respectively. Stability test suggested that almost no change in either SOD activity or GST activity of GST-SOD1-X-R9 was observed under physiological conditions. The fusion protein could be partially digested by collagenase Ⅳ in solution. Subsequently, the effect of MMP-2/9 activity on transmembrane ability of the fusion protein was tested using 2D and 3D cultured HepG2 cells. Little extracellular MMP-2 activity of HepG2 cells was observed under 2D culture condition. While under the 3D culture model, the size and the MMP-2 activity of the HepG2 tumor spheroid increased daily. GST-SOD1-R9 proteins showed the same transmembrane efficiency in 2D cultured HepG2 cells, but the transmembrane efficiency of GST-SOD1-X-R9 in 3D cultured HepG2 spheres was reduced remarkably. This study provided a basis for further investigating the selectively protective effect of GST-SOD1-X-R9 against oxidative damage in normal cells.
Ammonium Sulfate
;
Antioxidants
;
Cell-Penetrating Peptides/pharmacology*
;
Endopeptidases
;
Glutathione Transferase/metabolism*
;
Humans
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Recombinant Fusion Proteins
;
Recombinant Proteins
;
Superoxide Dismutase/metabolism*
;
Superoxide Dismutase-1
10.Gene cloning, induction, and prokaryotic expression of a Sm14-3-3 protein from Salvia miltiorrhiza.
Chen-Jing SHI ; Shi-Wei WANG ; Jia-Ming PENG ; Hai-Yu XU
China Journal of Chinese Materia Medica 2022;47(18):4886-4894
14-3-3 proteins are important proteins in plants, as they regulate plant growth and development and the response to biotic or abiotic stresses. In this study, a 14-3-3 gene(GenBank accession: OM683281) was screened from the cDNA library of the medicinal species Salvia miltiorrhiza by yeast two-hybrid and cloned. The open reading frame(ORF) was 780 bp, encoding 259 amino a cids. Bioinformatics analysis predicted that the protein was a non-transmembrane protein with the molecular formula of C_(1287)H_(2046)N_(346)O_(422)S_9, relative molecular weight of 29.4 kDa, and no signal peptide. Homologous sequence alignment and phylogenetic tree analysis proved that the protein belonged to 14-3-3 family and had close genetic relationship with the 14-3-3 proteins from Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. The 14-3-3 gene was ligated to the prokaryotic expression vector pGEX-4 T-1 and then transformed into Escherichia coli BL21 for the expression of recombinant protein. Real-time fluorescent quantitative PCR showed that the expression of this gene was different among roots, stems, leaves, and flowers of S. miltiorrhiza. To be specific, the highest expression was found in leaves, followed by stems, and the lowest expression was detected in flowers. S. miltiorrhiza plants were treated with 15% PEG(simulation of drought), and hormones salicylic acid, methyl jasmonate, and ethephon, respectively, and the expression of 14-3-3 gene peaked at the early stage of induction. Therefore, the gene can quickly respond to abiotic stresses such as drought and plant hormone treatments such as salicylic acid, jasmonic acid, and ethylene. This study lays the foundation for revealing the molecular mechanism of 14-3-3 protein regulating tanshinone biosynthesis and responding to biotic and abiotic stresses.
14-3-3 Proteins/metabolism*
;
Amino Acid Sequence
;
Cloning, Molecular
;
Ethylenes/metabolism*
;
Gene Expression Regulation, Plant
;
Hormones/metabolism*
;
Phylogeny
;
Plant Growth Regulators/pharmacology*
;
Plant Proteins/metabolism*
;
Recombinant Proteins/genetics*
;
Salicylic Acid/metabolism*
;
Salvia miltiorrhiza/metabolism*

Result Analysis
Print
Save
E-mail