1.Preparation of PrP-specific Polyclonal Antibody Immunization of -knockout Mice with Recombinant Human PrP Protein.
Xue Hua YANG ; Yue Zhang WU ; Kang XIAO ; Li Ping GAO ; Dong Dong CHEN ; Xiao Ping DONG ; Qi SHI
Biomedical and Environmental Sciences 2020;33(7):493-501
Objective:
The definite diagnosis of human and animal prion diseases depends on the examination of special pathological changes and/or detection of PrP in the brain tissues of suspected cases. Thus, developing methods to obtain PrP antibody with good specificity and sensitivity is fundamental for prion identification.
Methods:
We prepared a PrP-specific polyclonal antibody (pAb P54) in a -knockout mouse model immunization with recombinant full-length human PrP protein residues 23-231. Thereafter, we verified that pAb in Western blot, immunohistochemistry (IHC), and immunofluorescent (IFA) assays.
Results:
Western blot illustrated that the newly prepared pAb P54 could react with recombinant PrP protein, normal brain PrP from healthy rodents and humans, and pathological PrP in the brains of experimental rodents infected with scrapie and humans infected with different types of prion diseases. The electrophoretic patterns of brain PrP and PrP observed after their reaction with pAb P54 were nearly identical to those produced by commercial PrP monoclonal antibodies. Three glycosylated PrP molecules in the brain homogenates were clearly demonstrated in the reactions of these molecules with pAb P54. IHC assay revealed apparent PrP deposits in the GdnCl-treated brain slices of 139A-infected mice and 263K-infected hamsters. IFA tests with pAb P54 also showed clear green signals surrounding blue-stained cell nuclei.
Conclusion
The newly prepared pAb P54 demonstrated reliable specificity and sensitivity and, thus, may have potential applications not only in studies of prion biology but also in the diagnosis of human and experimental rodent prion diseases.
Animals
;
Antibodies
;
immunology
;
Blotting, Western
;
Fluorescent Antibody Technique
;
Immunization
;
Immunohistochemistry
;
Mice
;
Mice, Knockout
;
PrPC Proteins
;
immunology
;
PrPSc Proteins
;
immunology
;
Prion Proteins
;
immunology
;
Recombinant Proteins
;
immunology
2.Effects of different signal peptides on the secretion of human-mouse chimeric CMV-IgM.
Yamin CUI ; Xiaoping TIAN ; Qiaohui ZHAO ; Guilin LI
Chinese Journal of Biotechnology 2020;36(6):1223-1231
In order to prepare human-mouse chimeric cytomegalovirus-immunoglobulin M (CMV-IgM) in vitro and study the effects of different signal peptides on the secretion of CMV-IgM, genes were amplified from hybridoma cell line using RLM-RACE to construct the expression vector of chimeric CMV-IgM. Then, the signal peptide of SigF itself was replaced by five different secreted signal peptides (SigA-SigE) by PCR method, and the CHO cell was chosen as host cell for in vitro expression. SDS-PAGE, SEC-HPLC and ELISA experiments were carried out to evaluate the protein expression level and immunoreactivity of the purified CMV-IgM. A 910 kDa recombinant protein was successfully prepared and signal peptides (SigA-SigE) had an increased expressed CMV-IgM, which were 6.72, 5.19, 1.44, 1.85 and 1.98 times higher than that of the CMV 6# cell signal peptide SigF. In summary, this work provides a theoretical basis for the development of human-mouse chimeric CMV-IgM, and a novel route to increase the expression level of CMV-IgM.
Animals
;
Antibodies, Viral
;
genetics
;
immunology
;
Cricetinae
;
Cytomegalovirus
;
immunology
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression
;
Humans
;
Immunoglobulin M
;
immunology
;
Mice
;
Protein Sorting Signals
;
Recombinant Fusion Proteins
;
immunology
3.Bacterial expression of 183-227aa region of HER3 extracellular domain I and preparation and identification of its polyclonal antibodies.
Lei ZHU ; Pingchuan YUAN ; Zhigang ZHAO ; Xin WANG ; Guodong WANG ; Liang YAN
Journal of Southern Medical University 2020;40(6):806-813
OBJECTIVE:
To prepare the recombinant peptide MVF-HER3 I composed of the 183-227aa peptide segment of human epidermal growth factor receptor 3 (HER3 I) and the measles virus protein 288-302 peptide segment (MVF), and prepare polyclonal antibodies (PcAb) against this recombinant peptide.
METHODS:
The MVF-HER3 I gene was synthesized chemically and subcloned into pET21b or pET32a plasmid containing Thioredoxin (Trx) tag gene. The recombinant plasmids were identified by endonuclease digestion. MVF-HER3 I was expressed in BL21(DE3) cells under an optimal bacterial expression condition. The fusion protein Trx-MVF-HER3 I was purified using nickel ion affinity chromatography, and the purified protein was digested by enterokinase to remove Trx tag. The digested mixture underwent further nickel ion affinity chromatography to obtain purified MVF-HER3 I. The purified MVF-HER3 I was used to immunize SD rats subcutaneously for preparing anti-MVF-HER3 I PcAb. The titer of PcAb was determined using ELISA. The bindings of anti-MVF-HER3 I PcAb to MVF-HER3 I, native HER3 and MCF7 cells were analyzed using immunoblotting, immunoprecipitation and laser confocal microscopy. The growth inhibition effect of the antibodies on MCF7 cells cultured in the absence or presence of NRG was assessed using sulforhodamine B.
RESULTS:
The recombinant peptide gene could not be expressed alone, but could be efficiently expressed after fusion with Trx gene under optimized conditions. The fusion peptide MVF-HER3 I was successfully prepared from Trx-MVF-HER3 I. The anti-MVF-HER3 I PcAb, with a titer reaching 1: 512 000, specifically bound to MVF-HER3 I, recognized native HER3 and bound to the membrane of MCF7 cells. The obtained PcAb could dose-dependently inhibit the growth of MCF7 cells irrespective of the presence or absence of NRG.
CONCLUSIONS
We successfully obtained the recombinant peptide MVF-HER3 I and prepared its PcAb, which can facilitate further functional analysis of HER3 signaling pathway.
Animals
;
Antibodies
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Humans
;
Plasmids
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, ErbB-3
;
immunology
;
Recombinant Fusion Proteins
4.Intranasal Immunization Using CTA1-DD as a Mucosal Adjuvant for an Inactivated Influenza Vaccine.
Xue Ting FAN ; Yun Long WANG ; Qiu Dong SU ; Feng QIU ; Yao YI ; Zhi Yuan JIA ; Da Yan WANG ; Kun QIN ; Ye Ning ZOU ; Sheng Li BI ; Li Ping SHEN
Biomedical and Environmental Sciences 2019;32(7):531-540
OBJECTIVE:
To evaluate the effect of intranasal immunization with CTA1-DD as mucosal adjuvant combined with H3N2 split vaccine.
METHODS:
Mice were immunized intranasally with PBS (negative control), or H3N2 split vaccine (3 μg/mouse) alone, or CTA1-DD (5 μg/mouse) alone, or H3N2 split vaccine (3 μg/mouse) plus CTA1-DD (5 μg/mouse). Positive control mice were immunized intramuscularly with H3N2 split vaccine (3 μg/mouse) and alum adjuvant. All the mice were immunized twice, two weeks apart. Then sera and mucosal lavages were collected. The specific HI titers, IgM, IgG, IgA, and IgG subtypes were examined by ELISA. IFN-γ and IL-4 were test by ELISpot. In addition, two weeks after the last immunization, surivival after H3N2 virus lethal challenge was measured.
RESULTS:
H3N2 split vaccine formulated with CTA1-DD could elicit higher IgM, IgG and hemagglutination inhibition titers in sera. Furthermore, using CTA1-DD as adjuvant significantly improved mucosal secretory IgA titers in bronchoalveolar lavages and vaginal lavages. Meanwhile this mucosal adjuvant could enhance Th-1-type responses and induce protective hemagglutination inhibition titers. Notably, the addition of CTA1-DD to split vaccine provided 100% protection against lethal infection by the H3N2 virus.
CONCLUSION
CTA1-DD could promote mucosal, humoral and cell-mediated immune responses, which supports the further development of CTA1-DD as a mucosal adjuvant for mucosal vaccines.
Adjuvants, Immunologic
;
Administration, Intranasal
;
Animals
;
Cholera Toxin
;
Female
;
Immunity, Humoral
;
Influenza A Virus, H3N2 Subtype
;
immunology
;
Influenza Vaccines
;
Mice, Inbred BALB C
;
Nasal Mucosa
;
immunology
;
Random Allocation
;
Recombinant Fusion Proteins
5.Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies.
Sangsu BANG ; Jiho YOO ; Xingrui GONG ; Di LIU ; Qingjian HAN ; Xin LUO ; Wonseok CHANG ; Gang CHEN ; Sang-Taek IM ; Yong Ho KIM ; Judith A STRONG ; Ma-Zhong ZHANG ; Jun-Ming ZHANG ; Seok-Yong LEE ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):22-41
The voltage-gated Na channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.
Animals
;
Antibodies, Monoclonal
;
therapeutic use
;
Biotin
;
metabolism
;
Cells, Cultured
;
Disease Models, Animal
;
Female
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Hybridomas
;
chemistry
;
Hyperalgesia
;
drug therapy
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NAV1.5 Voltage-Gated Sodium Channel
;
metabolism
;
NAV1.7 Voltage-Gated Sodium Channel
;
chemistry
;
immunology
;
metabolism
;
Neuralgia
;
drug therapy
;
metabolism
;
Protein Binding
;
drug effects
;
Recombinant Proteins
;
biosynthesis
;
therapeutic use
;
Sensory Receptor Cells
;
drug effects
;
physiology
6.Evaluation of the Protective Efficacy of a Fused OmpK/Omp22 Protein Vaccine Candidate against Acinetobacter baumannii Infection in Mice.
San Jun GUO ; Shan REN ; Yong En XIE
Biomedical and Environmental Sciences 2018;31(2):155-158
Acinetobacter baumannii (A. Baumannii) is an emerging opportunistic pathogen responsible for hospital-acquired infections, and which now constitutes a sufficiently serious threat to public health to necessitate the development of an effective vaccine. In this study, a recombinant fused protein named OmpK/Omp22 and two individual proteins OmpK and Omp22 were obtained using recombinant expression and Ni-affinity purification. Groups of BALB/c mice were immunized with these proteins and challenged with a clinically isolated strain of A. baumannii. The bacterial load in the blood, pathological changes in the lung tissue and survival rates after challenge were evaluated. Mice immunized with OmpK/Omp22 fused protein provided significantly greater protection against A. baumannii challenge than those immunized with either of the two proteins individually. The results provide novel clues for future design of vaccines against A. baumannii.
Acinetobacter Infections
;
pathology
;
prevention & control
;
Acinetobacter baumannii
;
genetics
;
immunology
;
Animals
;
Antibodies, Bacterial
;
blood
;
Bacterial Load
;
Bacterial Outer Membrane Proteins
;
genetics
;
immunology
;
Bacterial Vaccines
;
immunology
;
Disease Models, Animal
;
Female
;
Mice, Inbred BALB C
;
Pneumonia, Bacterial
;
pathology
;
prevention & control
;
Recombinant Fusion Proteins
;
genetics
;
immunology
7.Efficient Humoral and Cellular Immune Responses Induced by a Chimeric Virus-like Particle Displaying the Epitope of EV71 without Adjuvant.
Pu LIANG ; Yao YI ; Qiu Dong SU ; Feng QIU ; Xue Ting FAN ; Xue Xin LU ; Sheng Li BI
Biomedical and Environmental Sciences 2018;31(5):343-350
OBJECTIVETo eliminate the side effects of aluminum adjuvant and His-tag, we constructed chimeric VLPs displaying the epitope of EV71 (SP70) without His-tagged. Then evaluating whether the VLPs could efficiently evoke not only humoral but also cellular immune responses against EV71 without adjuvant.
METHODSThe fusion protein was constructed by inserting SP70 into the MIR of truncated HBcAg sequence, expressed in E. Coli, and purified through ion exchange chromatography and density gradient centrifugation. Mice were immunized with the VLPs and sera were collected afterwards. The specific antibody titers, IgG subtypes and neutralizing efficacy were detected by ELISA, neutralization assay, and EV71 lethal challenge. IFN-γ and IL-4 secreted by splenocytes were tested by ELISPOT assay.
RESULTSHBc-SP70 proteins can self-assemble into empty VLPs. After immunization with HBc-SP70 VLPs, the detectable anti-EV71 antibodies were effective in neutralizing EV71 and protected newborn mice from EV71 lethal challenge. There was no significant difference for the immune efficacy whether the aluminum adjuvant was added or not. The specific IgG subtypes were mainly IgG1 and IgG2b and splenocytes from the mice immunized produced high levels of IFN-γ and IL-4.
CONCLUSIONThe fusion proteins without His-tagged was expressed and purified as soluble chimeric HBc-SP70 VLPs without renaturation. In the absence of adjuvant, they were efficient to elicit high levels of Th1/Th2 mixed immune response as well as assisted by aluminum adjuvant. Furthermore, the chimeric VLPs have potential to prevent HBV and EV71 infection simultaneously.
Adjuvants, Immunologic ; Animals ; Antibodies, Neutralizing ; Antibodies, Viral ; blood ; Enterovirus A, Human ; genetics ; Enterovirus Infections ; immunology ; virology ; Epitopes ; immunology ; metabolism ; Escherichia coli ; metabolism ; Female ; Immunity, Cellular ; Immunity, Humoral ; Mice ; Recombinant Fusion Proteins ; immunology
8.Effects of recombinant fusion protein interleukin-18 on expression of immune-inflammatory factors in mice infected with Staphylococcus aureus.
Chen CHEN ; Qiang CHEN ; Lan LI ; Xiao-Jun YU ; Jiang-Wei KE ; Mei-Juan HE ; Hong-Ping ZHOU ; Wen-Ping YANG ; Wen-Xing WANG
Chinese Journal of Contemporary Pediatrics 2017;19(6):705-711
OBJECTIVETo observe the effects of recombinant fusion protein interleukin (IL)-18 on the expression of immune-inflammatory factors in the mice infected with Staphylococcus aureus (SA), and to investigate the mechanism of action of IL-18 in defense of SA infection in vivo.
METHODSA total of 40 specific pathogen-free female BLAB/c mice were randomly divided into four groups: control, SA infection, immunized, and intervention. A mouse model of SA infection was established by nasal inoculation with SA liquid. The immunized group and the intervention group were intranasally given IL-18 before SA modeling, and then the SA infection group and the intervention group received the nasal inoculation with SA liquid; the control group was treated with phosphate buffered saline instead. The levels of IL-4, interferon (IFN)-γ, tumor necrosis factor (TNF), granulocyte colony-stimulating factor (G-CSF), IgM in the serum and bronchoalveolar lavage fluid (BALF) of mice were measured by enzyme-linked immunosorbent assay. The expression of macrophage inflammatory protein (MIP)-1α mRNA and MIP-2β mRNA in the lung tissue of mice were determined by real-time fluorescent quantitative PCR.
RESULTSCompared with the control group, the SA infection group and the immunized group had significantly higher levels of IL-4, G-CSF, and IgM in the serum and BALF and expression of MIP-1α mRNA and MIP-2β mRNA in the lung tissue (P<0.05); the SA infection group had a significantly lower level of IFN-γ and a significantly higher level of TNF in the serum and BALF (P<0.05); the immunized group had a significantly higher level of IFN-γ in the serum and BALF (P<0.05). Compared with the SA infection group, the intervention group had significantly higher levels of IL-4, IFN-γ, G-CSF, and IgM in the serum and BALF and expression of MIP-1α mRNA in the lung tissue. In contrast, the intervention group showed a significantly lower level of TNF in the serum and BALF and expression of MIP-2β mRNA in the lung tissue (P<0.05). All the above indicators in the intervention group were significantly higher than those in the control group (P<0.05), except the serum level of IFN-γ.
CONCLUSIONSIn the mice infected with SA, the recombinant fusion protein IL-18 by mucosal immunity can affect inflammatory factors in the serum and BALF and the expression of MIP-1α mRNA and MIP-2β mRNA in the lung tissue to promote the anti-infective immune response and enhance the ability to clear pathogens.
Animals ; Chemokine CCL3 ; analysis ; Female ; Granulocyte Colony-Stimulating Factor ; blood ; Interferon-gamma ; blood ; Interleukin-18 ; therapeutic use ; Interleukin-4 ; blood ; Mice ; Mice, Inbred BALB C ; Recombinant Fusion Proteins ; pharmacology ; therapeutic use ; Staphylococcal Infections ; drug therapy ; immunology
9.Application of recombinant GPⅢa combined Luminex beads for the detection of HPA-1a antibody.
Sudan TAO ; Ying LIU ; Yanming HE ; Yanling YING ; Ji HE ; Faming ZHU
Chinese Journal of Medical Genetics 2017;34(1):40-44
OBJECTIVETo generate recombinant GPⅢa as an alternative source for HPA-1a antigen and combine it with Luminex xMAP beads for the detection of HPA-1a-specific alloantibody.
METHODSThe full coding region of ITGB3 gene was amplified and ligated with pcDNA3.1. The recombinant plasmid was transfected into CHO cells, and those with stable expression were screened with G418. Expressed protein was identified and coupled with Luminex xMAP beads, which were then reacted with sera samples. Subsequently, phycoerythrin-labeled anti-species IgG antibody was added to the reaction wells and the median fluorescence was determined on a Luminex-100 analyzer.
RESULTSDNA sequencing confirmed that the cloned ITGB3 gene was HPA-1aa. The recombinant GPⅢa was coupled with Luminex xMAP beads. The sensitivity of Luminex beads assay to detect HPA-1a antibody was dilution 1/32 (3.125 U/mL). The Luminex beads assay could specifically identify the HPA-1a antibody from the test sera, and the results were consistent with that of monoclonal antibody-specific immobilization of platelet antigens (MAIPA) technology. Cross-reactivity was not observed with the samples containing HLA, ABO and other HPA antibodies (HPA-3a and HPA-5b). The results illustrated that to detect HPA antibody with Luminex xMAP beads technology is feasible.
CONCLUSIONRecombinant GPⅢa was successfully obtained and used to establish a Luminex technology-based method for the detection of HPA antibodies.
Animals ; Antigens, Human Platelet ; immunology ; Autoantibodies ; immunology ; Base Sequence ; Blotting, Western ; CHO Cells ; Cricetinae ; Cricetulus ; Humans ; Immunoassay ; methods ; Integrin beta3 ; genetics ; immunology ; metabolism ; Microspheres ; Recombinant Proteins ; immunology ; metabolism ; Reproducibility of Results
10.Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.
Dongfang LIU ; Shuo TIAN ; Kai ZHANG ; Wei XIONG ; Ndongala Michel LUBAKI ; Zhiying CHEN ; Weidong HAN
Protein & Cell 2017;8(12):861-877
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.
Animals
;
HIV Infections
;
immunology
;
therapy
;
HIV-1
;
immunology
;
Humans
;
Immunity, Cellular
;
Immunological Synapses
;
Immunotherapy
;
Killer Cells, Natural
;
transplantation
;
Neoplasms
;
immunology
;
therapy
;
Receptors, Antigen, T-Cell
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
genetics
;
immunology
;
T-Lymphocytes
;
immunology
;
transplantation

Result Analysis
Print
Save
E-mail