1.Construction of novel transmembrane fusion antioxidant enzymes and their protective effect against hydrogen peroxide-mediated cellular oxidative damage.
Jianru PAN ; Ziyi ZHANG ; Jinnan CHU ; Yanan HAN ; Xueying ZHENG ; Shirong CAI ; Huocong HE
Chinese Journal of Biotechnology 2025;41(4):1547-1558
Reactive oxygen species (ROS) are major contributors to radiation therapy-induced side effects in cancer patients. A fusion antioxidant enzyme comprising glutathione S-transferase (GST), superoxide dismutase 1 (SOD1), and a transmembrane peptide has been shown to effectively mitigate ROS-induced damage. To enhance its targeting capability, the fusion protein was further modified by incorporating a matrix metalloproteinase-2/9 substrate peptide (X) and the transmembrane peptide R9, yielding the antioxidant enzyme GST-SOD1-X-R9 (GS1XR). This modification reduced its transmembrane ability in tumor cells, thereby selectively protecting normal cells from oxidative stress. However, the use of non-human GST poses potential immunogenicity risks. In this study, we employed seamless cloning technology to construct an expression vector containing the human GST gene to replace the non-human GST gene, and then expressed and purified novel fusion antioxidant enzymes GS1R and GS1XR. The protective effects of newly constructed GS1R and GS1XR against hydrogen peroxide (H2O2)-induced oxidative damage in L-02 cells were then evaluated using GS1 as a control. Enzymatic activity assays revealed that the specific activity of GST in GS1XR remained unchanged compared to the unmodified protein, while SOD activity was enhanced. Exposure to 200 μmol/L H₂O₂ transiently activated the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway; however, this activation diminished after 24 h, reducing cell viability to 48.4%. Both GS1R and GS1XR effectively scavenged intracellular ROS, directly counteracting oxidative stress and promoting Nrf2 nuclear translocation, thereby activating antioxidant pathways and restoring cell viability to normal levels. The two enzymes showed comparable efficacy. In contrast, GS1, lacking transmembrane capability, was restricted to scavenging extracellular ROS and provided only limited protection. In conclusion, both novel fusion antioxidant enzymes demonstrated significant potential in safeguarding normal cells from ROS-mediated oxidative damage. The findings provide a foundation for further investigation in related field.
Humans
;
Oxidative Stress/drug effects*
;
Hydrogen Peroxide
;
Antioxidants/metabolism*
;
Glutathione Transferase/metabolism*
;
Recombinant Fusion Proteins/pharmacology*
;
Superoxide Dismutase-1
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/biosynthesis*
2.Construction and biological activity of metallothionein fused with ELP.
Longying LIU ; Tingting WANG ; Wei YU ; Simeng XU ; Xianlong YE
Chinese Journal of Biotechnology 2024;40(11):4242-4253
Metallothionein (MT) plays a significant role in heavy metal removal, antioxidant defense, and immune regulation. The current predominant approach for obtaining natural MT is extraction from tissue, which often entails complex procedures resulting in limited yields. In recent years, researchers have adopted the strategy of fusing labels such as GST or His for the heterologous expression of MT. However, a challenge in industrial production arises from the subsequent removal of these labels, which often leads to a significant reduction in the yield. The fusion with elastin-like polypeptides (ELPs) offers a promising solution for achieving soluble expression of the target protein, while providing a simple and fast purification process. In this study, ELP was fused with MT, which significantly up-regulated the soluble expression of MT. The fusion protein ELP-MT with the purity above 97% was obtained efficiently and simply by inverse transition cycling (ITC). ELP-MT exhibited a remarkable 2,2'-azinobis(3-ethylbenzothiazoline-6- sulfonic acid) ammonium salt (ABTS) scavenging activity, with the half maximal inhibitory concentration (IC50) of 0.77 μmol/L, which was 53.7 times that of the vitamin E derivative Trolox. In addition, the fusion protein demonstrated strong 1,1-diphenyl-2-trinitrohydrazine (DPPH) scavenging ability. Furthermore, ELP-MT had no toxicity to the proliferation and promoted the adhesion and migration of NIH/3T3 cells. All these results indicated that ELP-MT had good biocompatibility. We constructed the fusion protein ELP-MT combining the unique properties of MT and elastin, laying a technical foundation for the large-scale production of recombinant MT and facilitating the applications in food, health supplement, and cosmetic industries.
Metallothionein/metabolism*
;
Elastin/chemistry*
;
Recombinant Fusion Proteins/pharmacology*
;
Mice
;
Animals
;
Peptides/metabolism*
;
Escherichia coli/metabolism*
;
NIH 3T3 Cells
3.Expression, purification, and characterization of cell-permeable fusion antioxidant enzyme sensitive to matrix metalloproteinases-2/9.
Huocong HE ; Lixiang LIN ; Lingling LI ; Lunqiao WU ; Haiying LIN ; Jianru PAN
Chinese Journal of Biotechnology 2022;38(9):3515-3527
Antioxidant enzymes fused with cell-penetrating peptides could enter cells and protect cells from irradiation damage. However, the unselective transmembrane ability of cell-penetrating peptide may also bring antioxidant enzymes into tumor cells, thus protecting tumor cells and consequently reducing the efficacy of radiotherapy. There are active matrix metalloproteinase (MMP)-2 or MMP-9 in most tumor cellular microenvironments. Therefore, a fusion protein containing an MMP-2/9 cleavable substrate peptide X, a cell-penetrating peptide R9, a glutathione S-transferase (GST), and a human Cu, Zn superoxide dismutase (SOD1), was designed and named GST-SOD1-X-R9. In the tumor microenvironment, GST-SOD1-X-R9 would lose its cell-penetrating peptide and could not enter tumor cells due to the cleavage of substrate X by active MMP-2/9, thereby achieving selected entering normal cells. The complete nucleotide sequence of SOD1-X-R9 was synthesized and inserted into the prokaryotic expression vector pGEX-4T-1. The pGEX4T-1-SOD1-X-R9 recombinant plasmid was obtained, and soluble expression of the fusion protein was achieved. GST-SOD1-X-R9 was purified by ammonium sulfate precipitation and GST affinity chromatography. The molecular weight of the fusion protein was approximately 47 kDa, consistent with the theoretical value. The SOD and GST activities were 2 954 U/mg and 328 U/mg, respectively. Stability test suggested that almost no change in either SOD activity or GST activity of GST-SOD1-X-R9 was observed under physiological conditions. The fusion protein could be partially digested by collagenase Ⅳ in solution. Subsequently, the effect of MMP-2/9 activity on transmembrane ability of the fusion protein was tested using 2D and 3D cultured HepG2 cells. Little extracellular MMP-2 activity of HepG2 cells was observed under 2D culture condition. While under the 3D culture model, the size and the MMP-2 activity of the HepG2 tumor spheroid increased daily. GST-SOD1-R9 proteins showed the same transmembrane efficiency in 2D cultured HepG2 cells, but the transmembrane efficiency of GST-SOD1-X-R9 in 3D cultured HepG2 spheres was reduced remarkably. This study provided a basis for further investigating the selectively protective effect of GST-SOD1-X-R9 against oxidative damage in normal cells.
Ammonium Sulfate
;
Antioxidants
;
Cell-Penetrating Peptides/pharmacology*
;
Endopeptidases
;
Glutathione Transferase/metabolism*
;
Humans
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Recombinant Fusion Proteins
;
Recombinant Proteins
;
Superoxide Dismutase/metabolism*
;
Superoxide Dismutase-1
4.Production of antimicrobial peptide (Oxysterlin 1) in Escherichia coli with ELP self-cleavage tag.
Li GUO ; Huaxin LIU ; Ying LIN
Chinese Journal of Biotechnology 2021;37(8):2915-2923
Antimicrobial peptides are the most promising alternatives to antibiotics. However, the strategy of producing antimicrobial peptides by recombinant technology is complicated and expensive, which is not conducive to the large-scale production. Oxysterlin 1 is a novel type of cecropin antimicrobial peptide mainly targeting on Gram-negative bacteria and is of low cytotoxicity. In this study, a simple and cost-effective method was developed to produce Oxysterlin 1 in Escherichia coli. The Oxysterlin 1 gene was cloned into a plasmid containing elastin-like polypeptide (ELP) and protein splicing elements (intein) to construct the recombinant expression plasmid (pET-ELP-I-Oxysterlin 1). The recombinant protein was mainly expressed in soluble form in E. coli, and then the target peptide can be purified with a simple salting out method followed by pH changing. The final yield of Oxysterlin 1 was about 1.2 mg/L, and the subsequent antimicrobial experiment showed the expected antimicrobial activity. This study holds promise for large-scale production of antimicrobial peptides and the in-depth study of its antimicrobial mechanism.
Elastin
;
Escherichia coli/genetics*
;
Inteins
;
Peptides/pharmacology*
;
Pore Forming Cytotoxic Proteins
;
Recombinant Fusion Proteins/genetics*
5.Effects of recombinant fusion protein interleukin-18 on expression of immune-inflammatory factors in mice infected with Staphylococcus aureus.
Chen CHEN ; Qiang CHEN ; Lan LI ; Xiao-Jun YU ; Jiang-Wei KE ; Mei-Juan HE ; Hong-Ping ZHOU ; Wen-Ping YANG ; Wen-Xing WANG
Chinese Journal of Contemporary Pediatrics 2017;19(6):705-711
OBJECTIVETo observe the effects of recombinant fusion protein interleukin (IL)-18 on the expression of immune-inflammatory factors in the mice infected with Staphylococcus aureus (SA), and to investigate the mechanism of action of IL-18 in defense of SA infection in vivo.
METHODSA total of 40 specific pathogen-free female BLAB/c mice were randomly divided into four groups: control, SA infection, immunized, and intervention. A mouse model of SA infection was established by nasal inoculation with SA liquid. The immunized group and the intervention group were intranasally given IL-18 before SA modeling, and then the SA infection group and the intervention group received the nasal inoculation with SA liquid; the control group was treated with phosphate buffered saline instead. The levels of IL-4, interferon (IFN)-γ, tumor necrosis factor (TNF), granulocyte colony-stimulating factor (G-CSF), IgM in the serum and bronchoalveolar lavage fluid (BALF) of mice were measured by enzyme-linked immunosorbent assay. The expression of macrophage inflammatory protein (MIP)-1α mRNA and MIP-2β mRNA in the lung tissue of mice were determined by real-time fluorescent quantitative PCR.
RESULTSCompared with the control group, the SA infection group and the immunized group had significantly higher levels of IL-4, G-CSF, and IgM in the serum and BALF and expression of MIP-1α mRNA and MIP-2β mRNA in the lung tissue (P<0.05); the SA infection group had a significantly lower level of IFN-γ and a significantly higher level of TNF in the serum and BALF (P<0.05); the immunized group had a significantly higher level of IFN-γ in the serum and BALF (P<0.05). Compared with the SA infection group, the intervention group had significantly higher levels of IL-4, IFN-γ, G-CSF, and IgM in the serum and BALF and expression of MIP-1α mRNA in the lung tissue. In contrast, the intervention group showed a significantly lower level of TNF in the serum and BALF and expression of MIP-2β mRNA in the lung tissue (P<0.05). All the above indicators in the intervention group were significantly higher than those in the control group (P<0.05), except the serum level of IFN-γ.
CONCLUSIONSIn the mice infected with SA, the recombinant fusion protein IL-18 by mucosal immunity can affect inflammatory factors in the serum and BALF and the expression of MIP-1α mRNA and MIP-2β mRNA in the lung tissue to promote the anti-infective immune response and enhance the ability to clear pathogens.
Animals ; Chemokine CCL3 ; analysis ; Female ; Granulocyte Colony-Stimulating Factor ; blood ; Interferon-gamma ; blood ; Interleukin-18 ; therapeutic use ; Interleukin-4 ; blood ; Mice ; Mice, Inbred BALB C ; Recombinant Fusion Proteins ; pharmacology ; therapeutic use ; Staphylococcal Infections ; drug therapy ; immunology
6.Optimization of expression conditions and activity identification of hepatocyte-targeting peptide-human endostatin.
Yan MA ; Wei LI ; Xiaobo LI ; Dongmei BAO ; Jianpei LU
Chinese Journal of Biotechnology 2016;32(12):1715-1726
To obtain sufficient purified and active fusion protein-hepatocyte-targeting peptide-human endostatin (HTP-rES), we studied the growth curve and the optimal induction timing of BL21/pET21b-HTP-rES. Different conditions of pH value, induction time, induction concentration and induction temperature were optimized by univariate analysis. After washing, refolding and purifying, the activity of fusion protein was identified by flow cytometry and 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT). Results show that the logarithmic growth phase of BL21/pET21b-HTP-rES was from 1.5 h to 3.5 h, the optimum expression conditions were pH 8.0, 0.06 mmol/L IPTG, at 42 ℃ for 5 h. The purity of inclusion bodies was up to 60% after washing. The purity of target protein was more than 95% after refolding and purification. Our findings provide the foundation for further biological activity and drug development.
Drug Delivery Systems
;
Endostatins
;
pharmacology
;
Escherichia coli
;
Hepatocytes
;
drug effects
;
Humans
;
Inclusion Bodies
;
Peptides
;
pharmacology
;
Recombinant Fusion Proteins
7.Preparation and the biological effect of fusion protein GLP-1-exendin-4/ IgG4(Fc) fusion protein as long acting GLP-1 receptor agonist.
Acta Pharmaceutica Sinica 2015;50(12):1668-1672
GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for treatment of diabetes due to its short half-life (t½, 2-5 min). Exendin-4 is a polypeptide isolated from lizard saliva, which can bind to GLP-1 receptor, produce physiological effects similar to GLP-1, t½ up to 2.5 h, therefore, we developed a long-lasting GLP-1 receptor agonists and GLP-1-exendin-4 fusion IgG4 Fc [GLP-1-exendin-4/ IgG4(Fc)]. We constructed the eukaryotic expression vector of human GLP-1-exendin-4/IgG4(Fc)-pOptiVEC- TOPO by gene recombination technique and expressed the fusion protein human GLP-1-IgG4 (Fc) in CHO/DG44 cells. The fusion protein stimulated the INS-1 cells secretion of insulin, GLP-1, exendin-4 and fusion protein in CD1 mice pharmacokinetic experiments, as well as GLP-1, exendin-4 and fusion protein did anti-diabetic effect on streptozotocin induced mice. Results demonstrated that the GLP-1-exendin-4/IgG4(Fc) positive CHO/DG44 clones were chosen and the media from these positive clones. Western blotting showed that one protein band was found to match well with the predicted relative molecular mass of human GLP-1-exendin-4/IgG4(Fc). Insulin RIA showed that GLP-1-exendin-4/IgG4(Fc) dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (ip), the fusion protein peaked at 30 min in circulation and maintained a plateau for 200 h. Natural biological half-life of exendin-4 was (1.39 ± 0.28) h, GLP-1 in vivo t½ 4 min, indicating that fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1-exendin-4/IgG4(Fc) was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced diabetes in mice, longer duration of the biological activity of the fusion protein. The biological activity was significantly higher than that of GLP-1 and exendin-4. GLP-1-exendin-4/IgG4(Fc) has good anti-diabetic activity. It can be used as a long-acting GLP-1 agonists.
Animals
;
CHO Cells
;
Cricetinae
;
Cricetulus
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Glucagon-Like Peptide 1
;
pharmacology
;
Glucagon-Like Peptide-1 Receptor
;
agonists
;
Half-Life
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
Immunoglobulin G
;
pharmacology
;
Insulin
;
secretion
;
Mice
;
Peptides
;
pharmacology
;
Recombinant Fusion Proteins
;
pharmacology
;
Venoms
;
pharmacology
8.Expression and adjuvant effects of the fusion peptide TBP5.
Chen WANG ; Xiangling GUO ; Xiaokang LI ; Tingcai WU ; Deyuan LI ; Puyan CHEN
Chinese Journal of Biotechnology 2015;31(5):648-658
Thymopentin (TP5) and bursopentin (BP5) are both immunopotentiators. To explore whether the TP5-BP5 fusion peptide (TBP5) has adjuvant activity or not, we cloned the TBP5 gene and confirmed that the TBP5 gene in a recombinant prokaryotic expression plasmid was successfully expressed in Escherichia coli BL21. TBP5 significantly promoted the proliferation of thymic and splenic lymphocytes of mice. The potential adjuvant activity of the TBP5 was examined in mice by coinjecting TBP5 and H9N2 avian influenza virus (AIV) inactivated vaccine. HI antibody titers, HA antibodies and cytokines levels (IL-4 and IFN-γ) were determined. We found that TBP5 markedly elevated serum HI titers and HA antibody levels, induced the secretion of both IL-4 and IFN-γ cytokines. Furthermore, virus challenge experiments confirmed that TBP5 contributed to inhibition replication of the virus [H9N2 AIV (A/chicken/Jiangsu/NJ07/05)] from mouse lungs. Altogether, these findings suggest that TBP5 may be an effective adjuvant for avian vaccine and that this study provides a reference for further research on new vaccine adjuvants.
Adjuvants, Immunologic
;
pharmacology
;
Animals
;
Antibodies, Viral
;
blood
;
Cell Proliferation
;
drug effects
;
Influenza A Virus, H9N2 Subtype
;
drug effects
;
physiology
;
Influenza Vaccines
;
immunology
;
Interferon-gamma
;
immunology
;
Interleukin-4
;
immunology
;
Lymphocytes
;
drug effects
;
Mice
;
Oligopeptides
;
immunology
;
Orthomyxoviridae Infections
;
drug therapy
;
Recombinant Fusion Proteins
;
immunology
;
Spleen
;
cytology
;
Thymopentin
;
immunology
;
Thymus Gland
;
cytology
;
Vaccines, Inactivated
;
immunology
;
Virus Replication
9.Expression and antitumor activity of fusion protein RGD-TRAIL in Pichia pastoris.
Acta Pharmaceutica Sinica 2015;50(5):552-559
To compare the activity of RGD-TRAIL in different expression systems, RGD-TRAIL in both Escherichia coli (E.coli) and Pichia pastoris was constructed and expressed. In vitro activity of RGD-TRAIL from Pichia pastoris expression system was also analyzed. Genetic engineering techniques were used to construct recombinant plasmid pET30-rgd-trail and pHBM-rgd-trail. The recombinant protein RGD-TRAIL was purified with Ni ion affinity chromatography after induction. MTT assay, ELISA, scratch wound healing, transwell migration assay and Hoechst 33342 staining were performed to detect the effects of RGD-TRAIL on proliferation, binding activity, migration and apoptosis. The expression of apoptosis-associated proteins was detected by Western blotting. Recombinant protein RGD-TRAIL was successfully expressed in a form of inclusion body in E.coli, while expressed secretorily in Pichia pastoris. It possessed more potent cytotoxicity than RGD-TRAIL in E.coli by MTT assay. The RGD-TRAIL expressed by Pichia pastoris showed powerful binding affinity with cancer cells expressing α(v), DR4, DR5 and highly potent cytotoxicity through inducing apoptosis of cancer cells. Nuclear fragmentation was examined by Hoechst 33342 staining. Cleaved PARP and caspase-3 were also detected after incubation with RGD-TRAIL. Additionally, RGD-TRAIL inhibited migration significantly in A549 and HT1080 cells. The results demonstrate that Pichia pastoris expression system is more suitable for the recombinant protein RGD-TRAIL. Its binding affinity and antitumor activity might make RGD-TRAIL a promising candidate for cancer therapy.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Blotting, Western
;
Cell Line, Tumor
;
Chromatography, Affinity
;
Enzyme-Linked Immunosorbent Assay
;
Escherichia coli
;
Humans
;
Oligopeptides
;
biosynthesis
;
pharmacology
;
Pichia
;
metabolism
;
Plasmids
;
Recombinant Fusion Proteins
;
biosynthesis
;
pharmacology
;
TNF-Related Apoptosis-Inducing Ligand
;
biosynthesis
;
pharmacology
10.Human SNF2L Gene Is Regulated Constitutively and Inducibly in Neural Cells via a cAMP-Response Element.
Yu XIA ; Laicheng WANG ; Chunyan MA ; Yaoqin GONG ; Yueran ZHAO
Yonsei Medical Journal 2013;54(3):772-777
PURPOSE: SNF2L belongs to Imitation Switch family and plays an essential role in neural tissues and gonads. In our previous studies, we have demonstrated that the basal transcription of human SNF2L gene is regulated by two cis-elements, cAMP response element (CRE)- and Sp1-binding sites. Recent studies suggested that cyclic adenosine monophosphate (cAMP) stimulation significantly up-regulated SNF2L expression in ovarian granulose cells. These data suggested that protein kinase-mediated signal pathways might also regulate SNF2L expression in neural cells. We therefore investigated the effects of agents that activate protein kinases A on SNF2L gene expression in neural cells. MATERIALS AND METHODS: To increase intracellular cAMP levels, all neural cells were treated with forskolin and dbcAMP, two cAMP response activators. We exmined the effects of cAMP on the promoter activity of human SNF2L gene by luciferase reporter gene assays, and further examined the effects of cAMP on endogenous SNF2L mRNA levels by qPCR. RESULTS: Transient expression of a luciferase fusion gene under the control of the SNF2L promoter was significantly increased by treatment of rat primary neurons with forskolin or dbcAMP, but not PC12, C6 and SH-SY5Y cells. Consistently, treatment with forskolin or dbcAMP could enhance endogenous SNF2L mRNA levels also only in rat primary neurons. CONCLUSION: These results suggest that the CRE consensus sequence in the SNF2L proximal promoter most likely confers constitutive activation and regulation by cAMP in neural cells.
Animals
;
Bucladesine/pharmacology
;
Cell Line
;
Colforsin/pharmacology
;
Cyclic AMP/*metabolism
;
DNA-Binding Proteins/chemistry/*genetics/metabolism
;
*Gene Expression Regulation
;
Humans
;
Luciferases/analysis
;
Neurons/*metabolism
;
PC12 Cells
;
Promoter Regions, Genetic
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Wistar
;
Recombinant Fusion Proteins/analysis
;
*Response Elements
;
Transcription Factors/chemistry/*genetics/metabolism

Result Analysis
Print
Save
E-mail