1.H19 recruited N 6 -methyladenosine (m 6 A) reader YTHDF1 to promote SCARB1 translation and facilitate angiogenesis in gastric cancer.
Rumeng BAI ; Miaomiao SUN ; Yuanyuan CHEN ; Shuaishuai ZHUO ; Guoxin SONG ; Tianjun WANG ; Zhihong ZHANG
Chinese Medical Journal 2023;136(14):1719-1731
BACKGROUND:
Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism.
METHODS:
Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo . The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay.
RESULTS:
In this study, we found that hypoxia-induced factor (HIF)-1α could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N 6 -methyladenosine (m 6 A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m 6 A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells.
CONCLUSION
HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.
Humans
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Endothelial Cells/metabolism*
;
Gene Expression Regulation
;
Gene Expression Regulation, Neoplastic/genetics*
;
Hypoxia
;
MicroRNAs/genetics*
;
RNA
;
RNA, Long Noncoding/metabolism*
;
RNA-Binding Proteins/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Stomach Neoplasms/genetics*
2.Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy.
Muhammad Babar KHAWAR ; Chao LIU ; Fengyi GAO ; Hui GAO ; Wenwen LIU ; Tingting HAN ; Lina WANG ; Guoping LI ; Hui JIANG ; Wei LI
Protein & Cell 2021;12(1):67-75
Animals
;
Autophagy/genetics*
;
Cholesterol/metabolism*
;
Gene Expression Regulation
;
Integrases/metabolism*
;
Leydig Cells/metabolism*
;
Male
;
Mice, Knockout
;
Multienzyme Complexes/metabolism*
;
Phosphoproteins/metabolism*
;
Primary Cell Culture
;
Progesterone Reductase/metabolism*
;
RNA Splicing Factors/metabolism*
;
Scavenger Receptors, Class B/metabolism*
;
Sequestosome-1 Protein/metabolism*
;
Signal Transduction
;
Sirtuin 1/genetics*
;
Sodium-Hydrogen Exchangers/metabolism*
;
Steroid 17-alpha-Hydroxylase/metabolism*
;
Steroid Isomerases/metabolism*
;
Testosterone/genetics*
3.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics
4.Effect of Ginkgo biloba Tablet on the Expression of Scavenger Receptor A of the Aortic Wall in Atherosclerotic Rats.
Gui-yue ZHU ; Wei ZHU ; Ling-yun PAN ; Xiao-jing MA ; Hai-tao YUAN ; Guang YANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):449-453
OBJECTIVETo observe the expression of Ginkgo biloba Tablet (GbT) on scavenger receptor A (SRA) of the aortic wall and changes of serum inflammatory factors in atherosclerotic rats, and to explore its new mechanism for fighting against atherosclerosis (AS).
METHODSTotally 45 male Wistar rats were randomly divided into the control group, the model group, the GbT group, 15 rats in each group. Levels of blood glucose, blood lipids, blood calcium, serum C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (slCAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) were measured in all rats. The expression of SRA in the aortic wall of atherosclerotic rats was observed by immunohistochemical assay. The correlation between the expression of SRA and levels of in-flammatory factors was also observed.
RESULTSCompared with the control group, blood glucose and blood calcium obviously increased (P < 0.05); levels of TG, TC, and LDL-C were significantly elevated (P < 0.01); neointimal areas were significantly thickened, increased intima percentage was significantly enlarged, narrowed lumen index was significantly reduced; levels of CRP, sICAM-1, and sVCAM-1 were significantly elevated in the model group (all P < 0.01). Compared with the model group, blood glucose and blood calcium obviously decreased (P < 0.05); levels of TG, TC, and LDL-C significantly decreased (P < 0.01) in the GbT group. Aortic lumens were obviously narrower in the model group than in the GbT group (P < 0.05). SRA expressed at the aortic wall. The aforesaid 3 indices were significantly improved in the GbT group than in the model group (P < 0.01). Serum levels of CRP, sICAM-1, and sVCAM-1 were significantly decreased in the GbT group than in the model group (P < 0.01). Serum levels of CRP, sICAM-1, and sVCAM-1 were positively correlated with the percentage of SRA positive expression area (r = 0.701, 0.604, 0.581, all P < 0.01).
CONCLUSIONSSerum levels of inflammatory factors in atherosclerotic rats were elevated, and the expression of SRA in the aortic wall was enhanced. The expression of SRA was closely correlated with serum levels of inflammatory factors. GbT could decrease serum levels of inflammatory factors and inhibit the expression of SRA.
Animals ; Aorta ; drug effects ; metabolism ; Atherosclerosis ; drug therapy ; Blood Glucose ; analysis ; C-Reactive Protein ; analysis ; Calcium ; blood ; Drugs, Chinese Herbal ; pharmacology ; Ginkgo biloba ; chemistry ; Intercellular Adhesion Molecule-1 ; blood ; Lipids ; blood ; Male ; Random Allocation ; Rats ; Rats, Wistar ; Scavenger Receptors, Class A ; metabolism ; Tablets ; Vascular Cell Adhesion Molecule-1 ; blood
5.Prognostic role of genetic biomarkers in clinical progression of prostate cancer.
Maria Jesus ALVAREZ-CUBERO ; Luis Javier MARTINEZ-GONZALEZ ; Maria SAIZ ; Pedro CARMONA-SAEZ ; Juan Carlos ALVAREZ ; Manrique PASCUAL-GELER ; Jose Antonio LORENTE ; Jose Manuel COZAR
Experimental & Molecular Medicine 2015;47(8):e176-
The aim of this study was to analyze the use of 12 single-nucleotide polymorphisms in genes ELAC2, RNASEL and MSR1 as biomarkers for prostate cancer (PCa) detection and progression, as well as perform a genetic classification of high-risk patients. A cohort of 451 men (235 patients and 216 controls) was studied. We calculated means of regression analysis using clinical values (stage, prostate-specific antigen, Gleason score and progression) in patients and controls at the basal stage and after a follow-up of 72 months. Significantly different allele frequencies between patients and controls were observed for rs1904577 and rs918 (MSR1 gene) and for rs17552022 and rs5030739 (ELAC2). We found evidence of increased risk for PCa in rs486907 and rs2127565 in variants AA and CC, respectively. In addition, rs627928 (TT-GT), rs486907 (AG) and rs3747531 (CG-CC) were associated with low tumor aggressiveness. Some had a weak linkage, such as rs1904577 and rs2127565, rs4792311 and rs17552022, and rs1904577 and rs918. Our study provides the proof-of-principle that some of the genetic variants (such as rs486907, rs627928 and rs2127565) in genes RNASEL, MSR1 and ELAC2 can be used as predictors of aggressiveness and progression of PCa. In the future, clinical use of these biomarkers, in combination with current ones, could potentially reduce the rate of unnecessary biopsies and specific treatments.
Aged
;
Aged, 80 and over
;
Cohort Studies
;
Disease Progression
;
Endoribonucleases/*genetics
;
Gene Frequency
;
Genetic Markers/genetics
;
Genetic Predisposition to Disease
;
Humans
;
Male
;
Middle Aged
;
Neoplasm Proteins/*genetics
;
*Polymorphism, Single Nucleotide
;
Prognosis
;
Prostate/metabolism/*pathology
;
Prostatic Neoplasms/*diagnosis/*genetics
;
Scavenger Receptors, Class A/*genetics
6.Prevention and Treatment of Atherosclerosis by Three Different Chinese Medical Compounds: a Mechanism Study.
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(10):1244-1248
OBJECTIVETo study the effect of Buyang Huanwu Decoction (BHD), Xuefu Zhuyu Decoction (XZD), and Sijunzi Decoction (SD) contained serums on expressions of Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signals, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and to explore possible anti-atherosclerotic mechanisms.
METHODSTwenty New Zealand rabbits were divided into 4 groups at random, i.e., the normal control group, the BHD group (6.7 g/kg), the XZD group (3.6 g/kg), and the SD group (1.6 g/kg), 5 in each group. All medication lasted for 7 successive days. Two h after the final medication, about 50 mL blood was withdrawn from rabbit heart for preparing serums. Human umbilical vein endothelial cell ECV304 were cultured in vitro for 18 h and randomly divided into the blank control group, the model group, the Western medicine (WM) control group, the BHD group, the XZD group, and the SD group at random. ECV304, except in the blank control group, were stimulated with lipopolysaccharide (LPS) for 2 h. Those in the WM control group and CM groups were treated respectively with corresponding CM contained serum for 24 h. Finally gene and protein expressions of TLR4, myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor-associated factor-6 (TRAF-6), NF-κB, LOX-1, TNF-α, ICAM-1, and VCAM-1 were detected by fluorescent quantitative PCR and Western blot.
RESULTSCompared with the blank control group, mRNA expressions of TLR4, MyD88, TRAF-6, NF-KB, LOX-1 , TNF-cx, ICAM-1, and VCAM-1 increased significantly; protein expressions of TLR4, NF-κB, LOX-1, TNF-α, ICAM-1, and VCAM-1 also increased significantly in the model group (P < 0.01). Compared with the model group, mRNA and protein expressions of each index could be significantly inhibited in the BHD group, the XZD group, and the WM control group (P < 0.05). Besides, mRNA and protein expressions of each index could be significantly elevated more in the BHD group and the XZD group than in the WM control group (P < 0.05). No statistical difference existed in each index between the SD group and the rest groups (P > 0.05).
CONCLUSIONSThe mechanism of BHD and XZD for fighting against atherosclerosis might be associated with inhibiting TLR4/NF-κB signal transduction pathway and expressions of its downstream inflammatory factors such as LOX-1, TNF-α, ICAM-1, and VCAM-1. But SD showed no associated effect on atherosclerosis.
Animals ; Atherosclerosis ; drug therapy ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endothelial Cells ; Intercellular Adhesion Molecule-1 ; metabolism ; Lipopolysaccharides ; Myeloid Differentiation Factor 88 ; metabolism ; NF-kappa B ; metabolism ; Rabbits ; Scavenger Receptors, Class E ; Signal Transduction ; TNF Receptor-Associated Factor 6 ; metabolism ; Toll-Like Receptor 4 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Umbilical Veins ; Vascular Cell Adhesion Molecule-1 ; metabolism
7.The in vitro anti-atherosclerotic activity of compound E0869.
Xiao WANG ; Chang LIU ; Peng LIU ; Ni LI ; Yan-Ni XU ; Shu-Yi SI
Acta Pharmaceutica Sinica 2015;50(4):440-446
ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI/CLA-1) are the key proteins in reverse cholesterol transport (RCT). The high expression of ABCA1 and SR-BI/CLA-1 can decrease the danger of atherosclerosis. The purpose of the study is to find ABCA1 and CLA-1up-regulators for treating atherosclerosis by using cell-based high throughput screening models. Among 20 000 compounds screened, E0869 [1-(3, 4-dimethylphenyl)-1-oxopropan-2-yll4-((methylsulfonyl)methyl)benzoate] was found as the positive hit. The up-regulated activities of E0869 in ABCAl1-LUC and bCA-l1-LUC HepG2 cell were 160% and 175%, respectively. The EC50 values of E0869 in ABCAl1-LUC and CLA-l1-LUC HepG2 cell were 3.79 and 1.42 pμol- x ,(-1) respectively. E0869 could upregulate the mRNA and protein levels of ABCA1, SR-BI/CLA-1 and ABCGJ1genes in HepG2 and RAW264.7 cells by Real-Time Quantitative PCR and Western blotting analysis, but could not influence the expression of FAS, SREBP-l1 and CD36. Foam cell assay showed that E0869 could inhibit lipids accumulation in mouse peritoneal macrophages RAW264.7. Cholesterol efflux assay showed that E0869 could induce HDL-mediated cholesterol efflux in mouse peritoneal macrophages RAW264.7. In conclusion, E0869 could up-regulate ABCA1 and CLA-1 activity, and had good anti-atherosclerotic activity in vitro.
ATP Binding Cassette Transporter 1
;
metabolism
;
Animals
;
Atherosclerosis
;
drug therapy
;
Biological Transport
;
Cholesterol
;
Hep G2 Cells
;
High-Throughput Screening Assays
;
Humans
;
Macrophages, Peritoneal
;
drug effects
;
Mice
;
RNA, Messenger
;
Scavenger Receptors, Class B
;
metabolism
;
Up-Regulation
8.Expression of EV71-VP1, PSGL-1 and SCARB2 in Tissues of Infants with Brain Stem Encephalitis.
Ming LI ; Xiao-ping KONG ; Hong LIU ; Ling-xi CHENG ; Jing-lu HUANG ; Li QUAN ; Fang-yu WU ; Bo HAO ; Chao LIU ; Bin LUO
Journal of Forensic Medicine 2015;31(2):97-104
OBJECTIVE:
To understand the correlation of enterovirus 71 (EV71), P-selectin glycoprotein ligand-1 (PSGL-1), and scavenger receptor B2 (SCARB2) and to explore the possible pathway and mechanism of EV71 infection by observing the expression of EV71, PSGL-1 and SCARB2 in tissues of infants with brain stem encephalitis.
METHODS:
The organs and tissues of infants with EV71-VP1 positivity in their brain stems were chosen. Expression and distribution of EV71-VP1, PSGL-1, and SCARB2 were detected and compared by immunohistochemistry.
RESULTS:
Strong staining of EV71 -VP1 was observed in the neuron, glial cells, the inflammatory cells of perivascular cuffing, parietal cells of the gastric fundus gland while alveolar macrophages, intestinal gland epithelium cells, mucosa lymphoid nodule and lymphocyte of palatine tonsil showed moderate staining and weak staining were displayed in mesenteric lymph nodes and lymphocyte of spleen. PSGL-1 expression was detected in parietal cells of the gastric fundus gland, tonsillar crypt squamous epithelium, alveolar macrophages and leukocytes in each tissue. SCARB2 expression was observed in all the above tissues except the intestines and spleen.
CONCLUSION
The distribution of EV71 correlates with SCARB2 expression. SCARB2 plays an important role in virus infection and replication. Stomach may be an important site for EV71 replication.
Brain Stem/virology*
;
Encephalitis, Viral/virology*
;
Enterovirus A, Human/metabolism*
;
Enterovirus Infections/virology*
;
Humans
;
Immunohistochemistry
;
Infant
;
Leukocytes
;
Lysosome-Associated Membrane Glycoproteins
;
Membrane Glycoproteins/metabolism*
;
Receptors, Scavenger/metabolism*
;
Receptors, Virus/metabolism*
9.Effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury in rats with hyperlipidemia.
Jie QI ; Yun TAO ; Jun ZHANG ; Jian FU
China Journal of Chinese Materia Medica 2014;39(9):1670-1674
OBJECTIVETo investigate the effect of Antrodia cinnamomea on gene expression related to aortal endothelial injury of rats with hyperlipidemia.
METHODFifty SD rats were randomly divided into five groups: the normal control group (NG), the model group (MG), the antrodia cinnamomea groups of low, middle and high doses (AC-LG, AC-MG, AC-HG, 250, 500, 1 000 mg x kg(-1)). The rats were fed with high-fat diets to establish the hyperlipidemia model. After the drug administration for 10 weeks, their serum lipid, SOD, MDA and ox-LDL, LOX-1, P38 MAPK and NF-kappaB mRNA and protein expression were respectively determined, and the aortal endothelial injury was observed under electron microscope.
RESULTIn the model group, the contents of TC, TG and LDL-C significant increased (P < 0.01), whereas the content of HDL-C significant decreased (P < 0.01). Compared with the model group, both the AC-M group and the AC-H group showed reduction in endothelial injury and significant decrease in the content of TC, TG and LDL-C (P < 0.05 or P < 0.01). The content of HDL-C increased, but with no significant difference. SOD activity in serum remarkably increased (P < 0.05 or P < 0.01), MDA and ox-LDL levels dramatically decreased (P < 0.05 or P < 0.01).
CONCLUSIONA. cinnamomea can alleviate endothelial lipid injury by inhibiting the expressions of LOX-1, P38MAPK and NF-kappaB in aorta and better protect aortal endothelial cells from oxidative lipid injury.
Animals ; Antrodia ; chemistry ; Aorta ; drug effects ; metabolism ; ultrastructure ; Atherosclerosis ; blood ; genetics ; prevention & control ; Biological Products ; pharmacology ; Cholesterol ; blood ; Cholesterol, HDL ; blood ; Cholesterol, LDL ; blood ; Endothelium, Vascular ; drug effects ; metabolism ; pathology ; Enzyme-Linked Immunosorbent Assay ; Gene Expression ; drug effects ; Hyperlipidemias ; blood ; genetics ; prevention & control ; Lipoproteins, LDL ; blood ; Male ; Malondialdehyde ; blood ; Microscopy, Electron ; NF-kappa B ; blood ; genetics ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Scavenger Receptors, Class E ; blood ; genetics ; metabolism ; Superoxide Dismutase ; blood ; Triglycerides ; blood ; p38 Mitogen-Activated Protein Kinases ; blood ; genetics ; metabolism
10.Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice.
Giuseppe VALACCHI ; Giuseppe BELMONTE ; Clelia MIRACCO ; Hyeyoon EO ; Yunsook LIM
Nutrition Research and Practice 2014;8(1):20-26
Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.
Animals
;
Cholesterol*
;
Cytokines
;
Diet
;
Diet, High-Fat
;
Fruit*
;
Lipid Peroxidation
;
Lipoproteins
;
Liver*
;
Metabolism
;
Mice
;
Mice, Obese*
;
Morus*
;
Obesity
;
Oxidative Stress
;
Receptors, Scavenger
;
Skin*
;
Triglycerides

Result Analysis
Print
Save
E-mail