1.Sex Differences in Pain Contagion Determined by the Balance of Oxytocin and Corticosterone in the Anterior Cingulate Cortex in Rodents.
Zhiyuan XIE ; Wenxi YUAN ; Lingbo ZHOU ; Jie XIAO ; Huabao LIAO ; Jiang-Jian HU ; Xue-Jun SONG
Neuroscience Bulletin 2025;41(12):2167-2183
Empathy is crucial for communication and survival for individuals. Whether empathy in pain contagion shows sex differences and its underlying mechanisms remain unclear. Here, we report that pain contagion can occur in stranger female rats, but not in stranger males. Blocking oxytocin receptors in the anterior cingulate cortex (ACC) suppressed pain contagion in female strangers, while oxytocin administration induced pain contagion in male strangers. In vitro, corticosterone reduces neuronal activation by oxytocin. During male stranger interactions, higher corticosterone decreased oxytocin receptor-positive neuronal activity in the ACC, suppressing pain contagion. These findings highlight the role of oxytocin in pain contagion and suggest that sex differences in empathy may be determined by the balance of oxytocin and corticosterone in the ACC. This study suggests an approach for the treatment of certain mental disorders associated with abnormal empathy, such as autism and depression.
Animals
;
Oxytocin/pharmacology*
;
Gyrus Cinguli/drug effects*
;
Male
;
Female
;
Corticosterone/pharmacology*
;
Empathy/drug effects*
;
Sex Characteristics
;
Receptors, Oxytocin/antagonists & inhibitors*
;
Pain/psychology*
;
Rats
;
Rats, Sprague-Dawley
;
Neurons/metabolism*
2.The effect of oxytocin antagonist on uterus in response to exogenous oxytocin.
Suk Hyun PARK ; Chang Hun SONG ; Sok Cheon PAK ; George FLOURET ; Laird WILSON
Journal of Korean Medical Science 2000;15(3):299-302
This study was performed to determine the action mode of oxytocin antagonist. In Study 1, the duration of in vivo action of oxytocin antagonist I (AI) was examined. After infusing AI, oxytocin was given and repeated every hour for 5 hr. Uterine activities were monitored with a polygraph. Study 2 determined the effect of AI on uterine oxytocin receptor number (Rn) and binding affinity (Kd). AI treated rats were sacrificed at 0.5 and 4 hr later for receptor assay. In Study 1, the uterine contractile response to oxytocin was significantly inhibited (p>0.05) compared to controls at five min, 1 and 2 hr after injection of AI. No differences in response were detected compared to controls (p>0.05) at later hours. In Study 2, no differences (p>0.05) between the AI and control animals in either oxytocin receptor number or binding affinity was found. These data suggest that the major mode of AI action is via competitive inhibition at the uterine oxytocin receptor and not by altering receptor number or binding affinity. AI is suggested to have the potential of being a potent and specific tocolytic agent for prevention of preterm labor in human.
Animal
;
Female
;
Oxytocin/pharmacology
;
Oxytocin/metabolism
;
Oxytocin/antagonists & inhibitors*
;
Rats
;
Receptors, Oxytocin/metabolism
;
Uterus/physiology
;
Uterus/drug effects*
3.The effect of oxytocin antagonist on uterus in response to exogenous oxytocin.
Suk Hyun PARK ; Chang Hun SONG ; Sok Cheon PAK ; George FLOURET ; Laird WILSON
Journal of Korean Medical Science 2000;15(3):299-302
This study was performed to determine the action mode of oxytocin antagonist. In Study 1, the duration of in vivo action of oxytocin antagonist I (AI) was examined. After infusing AI, oxytocin was given and repeated every hour for 5 hr. Uterine activities were monitored with a polygraph. Study 2 determined the effect of AI on uterine oxytocin receptor number (Rn) and binding affinity (Kd). AI treated rats were sacrificed at 0.5 and 4 hr later for receptor assay. In Study 1, the uterine contractile response to oxytocin was significantly inhibited (p>0.05) compared to controls at five min, 1 and 2 hr after injection of AI. No differences in response were detected compared to controls (p>0.05) at later hours. In Study 2, no differences (p>0.05) between the AI and control animals in either oxytocin receptor number or binding affinity was found. These data suggest that the major mode of AI action is via competitive inhibition at the uterine oxytocin receptor and not by altering receptor number or binding affinity. AI is suggested to have the potential of being a potent and specific tocolytic agent for prevention of preterm labor in human.
Animal
;
Female
;
Oxytocin/pharmacology
;
Oxytocin/metabolism
;
Oxytocin/antagonists & inhibitors*
;
Rats
;
Receptors, Oxytocin/metabolism
;
Uterus/physiology
;
Uterus/drug effects*
4.Effect of diazepam on the oxytocin induced contraction of the isolated rat uterus.
Yoon Kee PARK ; Sung Ho LEE ; Oh Cheol KWON ; Jeoung Hee HA ; Kwang Youn LEE ; Won Joon KIM
Yeungnam University Journal of Medicine 1992;9(2):359-381
This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat (Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen. Weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled (37℃) muscle chamber containing Locke's solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GABA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscumol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxtrocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.
Animals
;
Baclofen
;
Bicuculline
;
Calcimycin
;
Calcium
;
Diazepam*
;
Dislocations
;
Estrogens
;
Female
;
GABA Agonists
;
GABA-A Receptor Agonists
;
GABA-A Receptor Antagonists
;
GABA-B Receptor Agonists
;
GABA-B Receptor Antagonists
;
gamma-Aminobutyric Acid
;
Humans
;
Muscimol
;
Ovariectomy
;
Oxytocin*
;
Picrotoxin
;
Rats*
;
Receptors, GABA
;
Uterus*

Result Analysis
Print
Save
E-mail