1.Analysis of a case of Multiple pterygium syndrome due to a novel variant of CHRNG gene.
Yiru CHEN ; Tianying NONG ; Weizhe SHI ; Jiangui LI ; Xuejiao DING ; Yue LI ; Mingwei ZHU ; Hongwen XU
Chinese Journal of Medical Genetics 2023;40(6):686-690
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a child with multiple pterygium syndrome (MPS).
METHODS:
A child with MPS who was treated at the Orthopedics Department of Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University on August 19, 2020 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and her parents were also collected. Whole exome sequencing (WES) was carried out for the child. Candidate variant was validated by Sanger sequencing of her parents and bioinformatic analysis.
RESULTS:
The child, an 11-year-old female, had a complain of "scoliosis found 8 years before and aggravated with unequal shoulder height for 1 year". WES results revealed that she has carried a homozygous c.55+1G>C splice variant of the CHRNG gene, for which both of her parents were heterozygous carriers. By bioinformatic analysis, the c.55+1G>C variant has not been recorded by the CNKI, Wanfang data knowledge service platform and HGMG databases. Analysis with Multain online software suggested that the amino acid encoded by this site is highly conserved among various species. As predicted with the CRYP-SKIP online software, the probability of activation and skipping of the potential splice site in exon 1 caused by this variant is 0.30 and 0.70, respectively. The child was diagnosed with MPS.
CONCLUSION
The CHRNG gene c.55+1G>C variant probably underlay the MPS in this patient.
Humans
;
Child
;
Female
;
Abnormalities, Multiple/genetics*
;
Malignant Hyperthermia/genetics*
;
Skin Abnormalities/genetics*
;
Heterozygote
;
Mutation
;
Receptors, Nicotinic/genetics*
2.Effect of electroacupuncture on myocardial fibrosis in spontaneously hypertensive rats based on cholinergic anti-inflammatory pathway.
Juan-Juan XIN ; Chen ZHOU ; Shuang WU ; Wen-Xi ZHANG ; Qun LIU ; Yu-Xue ZHAO ; Xiao-Chun YU ; Jun-Hong GAO
Chinese Acupuncture & Moxibustion 2023;43(10):1151-1156
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Neiguan" (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHR), and explore preliminarily the mediating role of cholinergic anti-inflammatory pathway (CAP) and its downstream nuclear factor κB (NF-κB) signaling pathway.
METHODS:
Six 12-week-old WKY male rats were employed as the normal group. Eighteen 12-week-old SHR were randomly divided into 3 groups, i.e. a model group, an EA group and a blocking group (EA after blocking α7 nicotinic acetylcholine receptor [α7nAchR]), with 6 rats in each one. In the EA group, EA was delivered at "Neiguan"(PC 6) and the site 0.5 cm from its left side, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity. One intervention took 30 min and was given once every 2 days, lasting 8 weeks. In the blocking group, prior to each EA, the α7nAchR specific blocker, α-bungartoxin was injected intravenously in the tails of the rats. After EA intervention, the systolic blood pressure (SBP), the diastolic blood pressure (DBP) and the mean arterial pressure (MAP) were measured with non-invasive blood pressure monitor. Using echocardiogram, the left ventricular (LV) anterior wall end-diastolic thickness (LVAWd) , LV posterior wall end-diastolic thickness (LVPWd) and the LV end-diastolic internal diameter (LVIDd) were measured. The level of hydroxyproline (Hyp) in the myocardial tissue was determined by using alkaline hydrolysis, and that of acetylcholine (Ach) was detected by ELISA. With the real-time PCR adopted, the mRNA expression of NF-κB p65, tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were determined.
RESULTS:
Compared with the normal group, SBP, DBP, MAP, LVAWd and LVPWd were increased (P<0.01), and LVIDd was decreased (P<0.01) in the rats of the model group. SBP, DBP, MAP and LVAWd were dropped (P<0.01, P<0.05), and LVIDd rose (P<0.01) in the EA group when compared with those in the model group. The differences in the above indexes were not statistically significant between the blocking group and the model group (P>0.05). Compared with the normal group, Hyp level and the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue increased (P<0.01, P<0.05) and Ach level decreased (P<0.01) in the model group. Hyp level, the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue were reduced (P<0.05, P<0.01) and Ach level rose (P<0.01) in the EA group when compared with those in the model group. These indexes were not different statistically between the blocking group and the model group (P>0.05).
CONCLUSION
CAP may be involved in ameliorating the pathological damage of myocardial fibrosis during EA at "Neiguan"(PC 6). The underlying effect mechanism is associated with up-regulating the neurotransmitter, Ach and down-regulating mRNA expression of NF-κB p65 and pro-inflammatory factors such as TNF-α, IL-1β and IL-6 in myocardial tissue.
Rats
;
Male
;
Animals
;
Rats, Inbred SHR
;
NF-kappa B/metabolism*
;
Rats, Inbred WKY
;
Electroacupuncture
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Neuroimmunomodulation
;
alpha7 Nicotinic Acetylcholine Receptor
;
Acetylcholine
;
Fibrosis
;
RNA, Messenger
3.Echinacoside Alleviates Cognitive Impairment in Cerebral Ischemia Rats through α 7nAChR-Induced Autophagy.
Ling DING ; Hong YE ; Long-Dian GU ; An-Qing DU ; Xin-Lu YUAN
Chinese journal of integrative medicine 2022;28(9):809-816
OBJECTIVES:
To evaluate the effect of echinacoside (ECH) on cognitive dysfunction in post cerebral stroke model rats.
METHODS:
The post stroke cognitive impairment rat model was created by occlusion of the transient middle cerebral artery (MCAO). The rats were randomly divided into 3 groups by a random number table: the sham group (sham operation), the MCAO group (received operation for focal cerebral ischemia), and the ECH group (received operation for focal cerebral ischemia and ECH 50 mg/kg per day), with 6 rats in each group. The infarct volume and spatial learning were evaluated by triphenyl tetrazolium chloride staining and Morris water maze. The expression of α7nAChR in the hippocampus was detected by immunohistochemistry. The contents of acetylcholine (ACh), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and catalase (CAT) were evaluated by enzyme linked immunosorbent assay. The neural apoptosis and autophagy were determined by TUNEL staining and LC3 staining, respectively.
RESULTS:
ECH significantly lessened the brain infarct volume and ameliorated neurological deficit in infarct volume and water content (both P<0.01). Compared with MCAO rats, administration of ECH revealed shorter escape latency and long retention time at 7, 14 and 28 days (all P<0.01), increased the α7nAChR protein expression, ACh content, and ChAT activity, and decreased AChE activity in MCAO rats (all P<0.01). ECH significantly decreased MDA content and increased the GSH content, SOD, and CAT activities compared with MCAO rats (all P<0.05). ECH suppressed neuronal apoptosis by reducing TUNEL-positive cells and also enhanced autophagy in MCAO rats (all P<0.01).
CONCLUSION
ECH treatment helped improve cognitive impairment by attenuating neurological damage and enhancing autophagy in MCAO rats.
Acetylcholinesterase
;
Animals
;
Autophagy
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Cognitive Dysfunction/drug therapy*
;
Glutathione/metabolism*
;
Glycosides
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Neuroprotective Agents/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/drug therapy*
;
Stroke/drug therapy*
;
Superoxide Dismutase/metabolism*
;
alpha7 Nicotinic Acetylcholine Receptor
4.Establishment of a gp120 transgenic mouse model with 7 nAChR knockout.
Tongtong HU ; Zelong GONG ; Yu WAN ; Yubin LI ; Xuefeng GAO ; Jingxian LUN ; Shenghe HUANG ; Hong CAO
Journal of Southern Medical University 2020;40(8):1184-1191
OBJECTIVE:
To construct a HIV-1 gp120 transgenic mouse model (gp120) with 7 nicotinic acetylcholine receptor (7nAChR) gene knockout.
METHODS:
The 7nAChR gene knockout mice (7R) were crossed with HIV-1gp120 transgenic mice (gp120) to generate F1 generation mice. We selected the F1 mice with the genotype of 7R/gp120 to mate to obtain the F2 mice. The genotypes of the F3 mice were identified by PCR, and the protein expressions in the double transgenic animal model was analyzed by immunohistochemistry. BV2 cells were treated with gp120 protein and 7nAChR inhibitor, and the expressions of IL-1β and TNF- were detected using ELISA.
RESULTS:
The results of PCR showed the bands of the expected size in F3 mice. Two F3 mice with successful double gene editing (7R/gp120) were obtained, and immunohistochemistry showed that the brain tissue of the mice did not express 7 nAChR but with high gp120 protein expression. In the cell experiment, treatment with gp120 promoted the secretion of IL-1β and TNF- in BV2 cells, while inhibition of 7nAChR significantly decreased the expression of IL-1β and TNF- ( < 0.001).
CONCLUSIONS
By mating gp120 Tg mice with 7R mice, we obtained gp120 transgenic mice with 7nAChR gene deletion, which serve as a new animal model for exploring the role of 7nAChR in gp120-induced neurotoxicity.
Animals
;
Disease Models, Animal
;
Glycoproteins
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Tumor Necrosis Factor-alpha
;
alpha7 Nicotinic Acetylcholine Receptor
;
metabolism
5.Cholinergic anti-inflammatory pathway and its role in treatment of sepsis.
Shuangfeng ZI ; Jinghui LI ; Lei LIU ; Furong LIU
Journal of Central South University(Medical Sciences) 2020;45(1):68-73
The cholinergic anti-inflammatory pathway (CAP) is a neuro-immunomodulatory pathway,in which acetylcholine (ACh) released by the interaction of vagal nerves with α7 nicotinic acetylcholine receptor (α7nAChR),which prevents the synthesis and release of pro-inflammatory cytokines and ultimately regulates the local or systemic inflammatory response in a feedback manner. It has been shown that there are many possible effective treatments for sepsis, including vagus nerve stimulation by physical therapy, drugs such as acetylcholine receptor agonist and ultrasound therapy.
Acetylcholine
;
Humans
;
Inflammation
;
Neuroimmunomodulation
;
Sepsis
;
Vagus Nerve Stimulation
;
alpha7 Nicotinic Acetylcholine Receptor
6.Electrophysiological phenotypes of synaptic transmission and neural network in hippocampal neurons of the α7-nAChR knockout mice.
Chao ZHENG ; Ling-Yun GAO ; Huan-Huan ZHANG ; Ying-Ying ZHA ; Meng-Ya WANG
Acta Physiologica Sinica 2019;71(2):261-270
It was reported that α7 nicotinic acetylcholine receptor (α7-nAChR) knockout (α7 KO) mice showed few functional phenotypes. The purpose of this study was to investigate the effect of α7 KO on the electrophysiological characteristics of hippocampus in mice. The effect of α7 KO on hippocampal CA3-CA1 synaptic transmission in mice was evaluated by standard extracellular field potential recordings. The electrophysiological phenotype of γ-aminobutyrate A receptors (GABA-Rs) of single hippocampal neuron was detected by perforated patch-clamp recordings. The results showed that, the slope of field excitatory postsynaptic potential (fEPSP) and carbachol-induced theta oscillation were significantly decreased in the hippocampal CA1 neurons of α7 KO mice, compared with those of wild type mice. Under the treatment of GABA-R agonist muscimol, the I-V curves of both the hippocampal CA1 and CA3 neurons of α7 KO mice shifted towards depolarizing direction obviously, compared with those of wild type mice. These results suggest that the hippocampal CA3-CA1 synaptic transmission in α7 KO mice was significantly impaired and GABA-R maturation was significantly delayed, indicating that the deletion of α7-nAChR gene could significantly change the electrophysiological function of the hippocampus. The results may provide a new understanding of the role of α7-nAChR in hippocampal function and associated diseases.
Animals
;
Hippocampus
;
cytology
;
Mice
;
Mice, Knockout
;
Neurons
;
physiology
;
Phenotype
;
Synaptic Transmission
;
alpha7 Nicotinic Acetylcholine Receptor
;
physiology
7.Research advances of autonomic nervous system in the regulation of cardiac inflammation.
Ye-Nan FENG ; Han XIAO ; You-Yi ZHANG
Acta Physiologica Sinica 2019;71(2):225-234
The autonomic nervous system consists of the sympathetic nervous system and the parasympathetic nervous system. These two systems control the heart and work in a reciprocal fashion to modulate myocardial energy metabolism, heart rate as well as blood pressure. Multiple cardiac pathological conditions are accompanied by autonomic imbalance, characterized by sympathetic overactivation and parasympathetic inhibition. Studies have shown that overactive sympathetic nervous system leads to increased cardiac inflammatory reaction. Orchestrated inflammatory response serves to clear dead cardiac tissue and activate reparative process, whereas excessive inflammation may result in pathological cardiac remodeling. Since the discovery of the α7 nicotinic acetylcholine receptor (α7nAChR)-mediated cholinergic anti-inflammatory pathway (CAP), the protective effects of the parasympathetic nervous system in cardiac inflammation have attracted more attention recently. In this review, we summarized the role and underlying mechanisms of the sympathetic and parasympathetic nervous systems in cardiac inflammation, in order to provide new insight into cardiac inflammatory response in cardiovascular diseases.
Autonomic Nervous System
;
physiology
;
Heart
;
physiopathology
;
Humans
;
Inflammation
;
physiopathology
;
Parasympathetic Nervous System
;
physiology
;
alpha7 Nicotinic Acetylcholine Receptor
;
physiology
8.Basal Forebrain Cholinergic-induced Activation of Cholecystokinin Inhibitory Neurons in the Basolateral Amygdala
Experimental Neurobiology 2019;28(3):320-328
The basolateral amygdala (BLA) receives dense projections from cholinergic neurons of the basal forebrain. Acetylcholine can contributes to amygdala-dependent behaviors: formation and extinction of fear memory and appetitive instrumental learning. However, the cholinergic mechanism at the circuit level has not been defined yet. We demonstrated that cholinergic-induced di-synaptic inhibition of BLA pyramidal neurons exhibits a retrograde form of short-term synaptic inhibition, depolarization-induced suppression of inhibition (DSI). Activation of nicotinic receptors was sufficient to evoke action potentials in cholecystokinin (CCK)-positive inhibitory neurons, which strongly inhibit pyramidal neurons through their perisomatic synapses. Our cell type-specific monosynaptic retrograde tracing also revealed that CCK neurons are innervated by basal forebrain cholinergic neurons. Therefore, our data indicated that CCK inhibitory neurons mediate the cholinergic-induced di-synaptic inhibition of BLA pyramidal neurons.
Acetylcholine
;
Action Potentials
;
Basal Forebrain
;
Basolateral Nuclear Complex
;
Cholecystokinin
;
Cholinergic Neurons
;
Conditioning, Operant
;
Iontophoresis
;
Memory
;
Neurons
;
Pyramidal Cells
;
Receptors, Nicotinic
;
Synapses
9.Melatonin inhibits nicotinic acetylcholine receptor functions in bovine chromaffin cells
Su Hyun JO ; Seung Hyun LEE ; Kyong Tai KIM ; Se Young CHOI
International Journal of Oral Biology 2019;44(2):50-54
Melatonin is a neurotransmitter that modulates various physiological phenomena including regulation and maintenance of the circadian rhythm. Nicotinic acetylcholine receptors (nAChRs) play an important role in oral functions including orofacial muscle contraction, salivary secretion, and tooth development. However, knowledge regarding physiological crosstalk between melatonin and nAChRs is limited. In the present study, the melatonin-mediated modulation of nAChR functions using bovine adrenal chromaffin cells, a representative model for the study of nAChRs, was investigated. Melatonin inhibited the nicotinic agonist dimethylphenylpiperazinium (DMPP) iodide-induced cytosolic free Ca²⁺ concentration ([Ca²⁺](i)) increase and norepinephrine secretion in a concentration-dependent manner. The inhibitory effect of melatonin on the DMPP-induced [Ca²⁺](i) increase was observed when the melatonin treatment was performed simultaneously with DMPP. The results indicate that melatonin inhibits nAChR functions in both peripheral and central nervous systems.
Calcium Signaling
;
Central Nervous System
;
Chromaffin Cells
;
Circadian Rhythm
;
Cytosol
;
Dimethylphenylpiperazinium Iodide
;
Melatonin
;
Muscle Contraction
;
Neurotransmitter Agents
;
Nicotinic Agonists
;
Norepinephrine
;
Physiological Phenomena
;
Receptors, Nicotinic
;
Tooth
10.A Novel Immunomodulatory Mechanism Dependent on Acetylcholine Secreted by Human Bone Marrow-derived Mesenchymal Stem Cells
Tac Ghee YI ; Yun Kyoung CHO ; Hyun Joo LEE ; Junghee KIM ; Myung Shin JEON ; Dong Sik HAM ; Woo Cheol KIM ; Sun U SONG
International Journal of Stem Cells 2019;12(2):315-330
BACKGROUND AND OBJECTIVES: Mesenchymal stem cells (MSCs) are used to treat autoimmune or inflammatory diseases. Our aim was to determine the immunomodulatory mechanisms elicited by MSCs during inflammation. METHODS AND RESULTS: We cocultured MSCs with peripheral blood mononuclear cells for a mixed lymphocyte reaction or stimulated them by phytohemagglutinin. Morphological changes of MSCs and secretion of acetylcholine (ACh) from MSCs were measured. The effects of an ACh antagonist and ACh agonist on lymphocyte proliferation and proinflammatory-cytokine production were determined. The inflammatory milieu created by immune-cell activation caused MSCs to adopt a neuronlike phenotype and induced them to release ACh. Additionally, nicotinic acetylcholine receptors (nAChRs) were upregulated in activated peripheral blood mononuclear cells. We observed that ACh bound to nAChR on activated immune cells and led to the inhibition of lymphocyte proliferation and of proinflammatory-cytokine production. MSC-mediated immunosuppression through ACh activity was reversed by an ACh antagonist called α-bungarotoxin, and lymphocyte proliferation was inhibited by an ACh agonist, ACh chloride. CONCLUSIONS: Our findings point to a novel immunomodulatory mechanism in which ACh secreted by MSCs under inflammatory conditions might modulate immune cells. This study may provide a novel method for the treatment of autoimmune diseases by means of MSCs.
Acetylcholine
;
Autoimmune Diseases
;
Humans
;
Immunosuppression
;
Inflammation
;
Lymphocyte Culture Test, Mixed
;
Lymphocytes
;
Mesenchymal Stromal Cells
;
Methods
;
Phenotype
;
Receptors, Nicotinic

Result Analysis
Print
Save
E-mail