1.Effect of acupuncture on neuronal function in the thalamic reticular nucleus of insomnia rats based on α7-nAChR.
Zhijun SHU ; Yipeng XU ; Quanyi ZHANG ; Dingjun CAI ; Zhengyu ZHAO
Chinese Acupuncture & Moxibustion 2025;45(12):1751-1758
OBJECTIVE:
To investigate the role of α7-nicotinic acetylcholine receptor (α7-nAChR) in the regulation of neuronal activity and expression of synapse-related proteins in the thalamic reticular nucleus (TRN) of insomnia rats treated by acupuncture.
METHODS:
A total of 36 male Sprague-Dawley (SD) rats of clean grade were randomly divided into a control group, a model group, an acupuncture group, and an acupuncture+antagonist group, with 9 rats in each group. The model group, the acupuncture group, and the acupuncture+antagonist group were treated with intraperitoneal injection of p-chlorophenylalanine (PCPA) to establish insomnia model. After successful modeling, the acupuncture group and the acupuncture+antagonist group received acupuncture at bilateral Neiguan (PC6) and Zusanli (ST36) once daily for 5 consecutive days. Thirty min before each acupuncture session, the acupuncture+antagonist group was intraperitoneally injected with methyllycaconitine citrate (MLA), an α7-nAChR antagonist, at a dosage of 5 mg/kg while the acupuncture group received the same volume of 0.9% sodium chloride solution. The rats' daytime spontaneous activity was observed. Neuronal discharge in the TRN was detected using neuroelectrophysiological methods. Immunofluorescence staining was used to detect parvalbumin-positive (PV+) neurons and co-expression of PV+ and postsynaptic density protein-95 (PSD-95) in the TRN.
RESULTS:
Compared with the control group, the model group showed increased daytime spontaneous activity (P<0.01); decreased average fluorescence intensity and positive number of PV+ neurons in the TRN (P<0.01); decreased neuronal discharge frequency (P<0.01), prolonged inter-discharge intervals (P<0.01) in the TRN; reduced number of PV+/PSD-95 double-positive cells in the TRN (P<0.01). Compared with the model group, the acupuncture group showed decreased daytime spontaneous activity (P<0.01); increased average fluorescence intensity and positive number of PV+ neurons in the TRN (P<0.01); increased neuronal discharge frequency (P<0.01), shortened inter-discharge intervals (P<0.01) in the TRN; increased number of PV+/PSD-95 double-positive cells in the TRN (P<0.05). Compared with the acupuncture group, the acupuncture+antagonist group exhibited increased daytime spontaneous activity (P<0.01); reduced average fluorescence intensity and positive number of PV⁺ neurons in the TRN (P<0.01); decreased neuronal discharge frequency (P<0.05), prolonged inter-discharge intervals (P<0.05) in the TRN; reduced number of PV+/PSD-95 double-positive cells in the TRN (P<0.01).
CONCLUSION
α7-nAChR are involved in mediating the regulatory effect of acupuncture on circadian rhythm disturbances in PCPA-induced insomnia rats. Blocking α7-nAChR attenuates the activating effect of acupuncture on TRN neurons, and reduces the expression of PSD-95 protein on GABAergic neurons.
Animals
;
Male
;
Acupuncture Therapy
;
alpha7 Nicotinic Acetylcholine Receptor/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Neurons/metabolism*
;
Humans
;
Thalamic Nuclei/physiopathology*
;
Acupuncture Points
;
Disks Large Homolog 4 Protein
2.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
3.Research progress on the potential mechanisms and effects of the cholinergic anti-inflammatory pathway in sepsis.
Chinese Critical Care Medicine 2025;37(4):397-401
Sepsis is a common clinical syndrome in intensive care unit (ICU) with high morbidity and high mortality, making it a global health issue. The estimated global incidence of sepsis is 437/100 000, with an in-hospital mortality of 17%, which is higher in developing countries and underdeveloped regions. Despite some progress in sepsis treatment in recent years, the complexity of its pathophysiology limits therapeutic effectiveness. The cholinergic anti-inflammatory pathway (CAP), a neuro-immune regulatory pathway, plays a crucial role in sepsis through key components such as the vagus nerve, central M-type muscarinic receptor, the spleen and splenic sympathetic nerves, acetylcholine, and the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR). This article explores the potential mechanisms and roles of CAP in sepsis, focusing on CAP-related cell signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway, Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and cyclooxygenase (COX) and prostaglandin E2 (PGE2) signaling pathways. Potential applications of CAP in sepsis treatment include stimulating the vagus nerve (e.g., through pharmacological, electrical, or acupuncture stimulation), using α7nAChR agonists (e.g., nicotine, GTS-21, and PNU-282987), adrenergic receptor agonists (e.g., dexmedetomidine and salbutamol), or other drugs and bioactive substances (e.g., buprenorphine and traditional Chinese medicine components). These approaches aim to activate CAP, suppress inflammatory responses, and improve sepsis prognosis, providing a theoretical basis for treatment and promoting the development of related drugs.
Sepsis/metabolism*
;
Humans
;
Signal Transduction
;
alpha7 Nicotinic Acetylcholine Receptor
;
NF-kappa B/metabolism*
;
Anti-Inflammatory Agents
;
Acetylcholine
4.Acupuncture activates vagus nerve-macrophage axis and improves cardiac electrophysiology and inflammatory response in rats with atrial fibrillation via α7nAChR-JAK2/STAT3 pathway.
Zhi-Han LI ; Wen-Min YANG ; Qi HUANG ; Guang-Xia SHI ; Cun-Zhi LIU ; Yu-Qin ZHANG
Journal of Integrative Medicine 2025;23(4):398-414
OBJECTIVE:
The occurrence and development of atrial fibrillation (AF) are influenced by the autonomic nervous system and inflammation. Acupuncture is an effective treatment for AF. This study explored the protective effects of acupuncture in a rat model of paroxysmal AF and investigated its mechanisms.
METHODS:
Male Sprague-Dawley rats (n = 130) were randomly divided into blank control (Con), sham operation (Sham), AF, and acupuncture treatment (Acu) groups. A paroxysmal AF model was established by rapid atrial pacing through the jugular vein. Rats in the Acu group were immobilized to receive acupuncture treatment at Neiguan acupoint (PC6) for 20 min daily for seven days. The other groups were immobilized for the same duration over the treatment period but did not receive acupuncture. The AF induction rate, AF duration, cardiac electrophysiological parameters, and heart rate variability were evaluated by monitoring surface electrocardiogram and vagus nerve discharge signals. After the intervention, the rats were euthanized, and atrial morphology was assessed using haematoxylin and eosin staining. The expression of macrophage F4/80 antigen (F4/80) and cluster of differentiation (CD) 86 in atrial myocardial tissue was detected using immunohistochemistry, immunofluorescence and flow cytometry. The expression levels or contents of interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), α7 nicotinic acetylcholine receptor (α7nAChR), phosphorylated Janus kinase 2 (p-JAK2), and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in atrial myocardial tissue were detected using Western blotting, reverse transcription-quantitative polymerase chain reaction, or enzyme-linked immunosorbent assay. The role of α7nAChR in acupuncture treatment was verified by intraperitoneal injection of the α7nAChR antagonist methyllycaconitine (MLA).
RESULTS:
Compared with the AF group, acupuncture significantly reduced AF duration and induction rate, improved cardiac electrophysiology by enhancing vagus nerve activity and regulating autonomic balance. It also decreased the pro-inflammatory M1 macrophage proportion, alleviating myocardial injury and infiltration. MLA weakened acupuncture's electrophysiological improvement and anti-inflammatory effect. Results suggest that acupuncture triggers the α7nAChR-JAK2/STAT3 pathway and exerts cardioprotection via neuroimmune regulation.
CONCLUSION
Acupuncture significantly reduced the AF induction rate, shortened AF duration, improved cardiac electrophysiological parameters, enhanced vagus nerve activity, and decreased the expression of pro-inflammatory M1 macrophages and inflammatory factors in rats with paroxysmal AF. Its positive effects are related to the activation of the α7nAChR-mediated JAK2/STAT3 signalling pathway, indicating that the interaction between cardiac vagus nerve and macrophages may be a potential target for acupuncture in the prevention and treatment of AF. Please cite this article as: Li ZH, Yang WM, Huang Q, Shi GX, Liu CZ, Zhang YQ. Acupuncture activates vagus nerve-macrophage axis and improves cardiac electrophysiology and inflammatory response in rats with atrial fibrillation via α7nAChR-JAK2/STAT3 pathway. J Integr Med. 2025; 23(4): 398-414.
Animals
;
Male
;
Rats, Sprague-Dawley
;
STAT3 Transcription Factor/metabolism*
;
alpha7 Nicotinic Acetylcholine Receptor/metabolism*
;
Janus Kinase 2/metabolism*
;
Atrial Fibrillation/metabolism*
;
Vagus Nerve/physiopathology*
;
Rats
;
Acupuncture Therapy
;
Signal Transduction
;
Macrophages/metabolism*
;
Inflammation/therapy*
5.Effect of electroacupuncture on myocardial fibrosis in spontaneously hypertensive rats based on cholinergic anti-inflammatory pathway.
Juan-Juan XIN ; Chen ZHOU ; Shuang WU ; Wen-Xi ZHANG ; Qun LIU ; Yu-Xue ZHAO ; Xiao-Chun YU ; Jun-Hong GAO
Chinese Acupuncture & Moxibustion 2023;43(10):1151-1156
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Neiguan" (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHR), and explore preliminarily the mediating role of cholinergic anti-inflammatory pathway (CAP) and its downstream nuclear factor κB (NF-κB) signaling pathway.
METHODS:
Six 12-week-old WKY male rats were employed as the normal group. Eighteen 12-week-old SHR were randomly divided into 3 groups, i.e. a model group, an EA group and a blocking group (EA after blocking α7 nicotinic acetylcholine receptor [α7nAchR]), with 6 rats in each one. In the EA group, EA was delivered at "Neiguan"(PC 6) and the site 0.5 cm from its left side, with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity. One intervention took 30 min and was given once every 2 days, lasting 8 weeks. In the blocking group, prior to each EA, the α7nAchR specific blocker, α-bungartoxin was injected intravenously in the tails of the rats. After EA intervention, the systolic blood pressure (SBP), the diastolic blood pressure (DBP) and the mean arterial pressure (MAP) were measured with non-invasive blood pressure monitor. Using echocardiogram, the left ventricular (LV) anterior wall end-diastolic thickness (LVAWd) , LV posterior wall end-diastolic thickness (LVPWd) and the LV end-diastolic internal diameter (LVIDd) were measured. The level of hydroxyproline (Hyp) in the myocardial tissue was determined by using alkaline hydrolysis, and that of acetylcholine (Ach) was detected by ELISA. With the real-time PCR adopted, the mRNA expression of NF-κB p65, tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were determined.
RESULTS:
Compared with the normal group, SBP, DBP, MAP, LVAWd and LVPWd were increased (P<0.01), and LVIDd was decreased (P<0.01) in the rats of the model group. SBP, DBP, MAP and LVAWd were dropped (P<0.01, P<0.05), and LVIDd rose (P<0.01) in the EA group when compared with those in the model group. The differences in the above indexes were not statistically significant between the blocking group and the model group (P>0.05). Compared with the normal group, Hyp level and the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue increased (P<0.01, P<0.05) and Ach level decreased (P<0.01) in the model group. Hyp level, the mRNA expression of NF-κB p65, TNF-α, IL-1β and IL-6 in the myocardial tissue were reduced (P<0.05, P<0.01) and Ach level rose (P<0.01) in the EA group when compared with those in the model group. These indexes were not different statistically between the blocking group and the model group (P>0.05).
CONCLUSION
CAP may be involved in ameliorating the pathological damage of myocardial fibrosis during EA at "Neiguan"(PC 6). The underlying effect mechanism is associated with up-regulating the neurotransmitter, Ach and down-regulating mRNA expression of NF-κB p65 and pro-inflammatory factors such as TNF-α, IL-1β and IL-6 in myocardial tissue.
Rats
;
Male
;
Animals
;
Rats, Inbred SHR
;
NF-kappa B/metabolism*
;
Rats, Inbred WKY
;
Electroacupuncture
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Neuroimmunomodulation
;
alpha7 Nicotinic Acetylcholine Receptor
;
Acetylcholine
;
Fibrosis
;
RNA, Messenger
6.Analysis of a case of Multiple pterygium syndrome due to a novel variant of CHRNG gene.
Yiru CHEN ; Tianying NONG ; Weizhe SHI ; Jiangui LI ; Xuejiao DING ; Yue LI ; Mingwei ZHU ; Hongwen XU
Chinese Journal of Medical Genetics 2023;40(6):686-690
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a child with multiple pterygium syndrome (MPS).
METHODS:
A child with MPS who was treated at the Orthopedics Department of Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University on August 19, 2020 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and her parents were also collected. Whole exome sequencing (WES) was carried out for the child. Candidate variant was validated by Sanger sequencing of her parents and bioinformatic analysis.
RESULTS:
The child, an 11-year-old female, had a complain of "scoliosis found 8 years before and aggravated with unequal shoulder height for 1 year". WES results revealed that she has carried a homozygous c.55+1G>C splice variant of the CHRNG gene, for which both of her parents were heterozygous carriers. By bioinformatic analysis, the c.55+1G>C variant has not been recorded by the CNKI, Wanfang data knowledge service platform and HGMG databases. Analysis with Multain online software suggested that the amino acid encoded by this site is highly conserved among various species. As predicted with the CRYP-SKIP online software, the probability of activation and skipping of the potential splice site in exon 1 caused by this variant is 0.30 and 0.70, respectively. The child was diagnosed with MPS.
CONCLUSION
The CHRNG gene c.55+1G>C variant probably underlay the MPS in this patient.
Humans
;
Child
;
Female
;
Abnormalities, Multiple/genetics*
;
Malignant Hyperthermia/genetics*
;
Skin Abnormalities/genetics*
;
Heterozygote
;
Mutation
;
Receptors, Nicotinic/genetics*
7.Echinacoside Alleviates Cognitive Impairment in Cerebral Ischemia Rats through α 7nAChR-Induced Autophagy.
Ling DING ; Hong YE ; Long-Dian GU ; An-Qing DU ; Xin-Lu YUAN
Chinese journal of integrative medicine 2022;28(9):809-816
OBJECTIVES:
To evaluate the effect of echinacoside (ECH) on cognitive dysfunction in post cerebral stroke model rats.
METHODS:
The post stroke cognitive impairment rat model was created by occlusion of the transient middle cerebral artery (MCAO). The rats were randomly divided into 3 groups by a random number table: the sham group (sham operation), the MCAO group (received operation for focal cerebral ischemia), and the ECH group (received operation for focal cerebral ischemia and ECH 50 mg/kg per day), with 6 rats in each group. The infarct volume and spatial learning were evaluated by triphenyl tetrazolium chloride staining and Morris water maze. The expression of α7nAChR in the hippocampus was detected by immunohistochemistry. The contents of acetylcholine (ACh), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), activities of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and catalase (CAT) were evaluated by enzyme linked immunosorbent assay. The neural apoptosis and autophagy were determined by TUNEL staining and LC3 staining, respectively.
RESULTS:
ECH significantly lessened the brain infarct volume and ameliorated neurological deficit in infarct volume and water content (both P<0.01). Compared with MCAO rats, administration of ECH revealed shorter escape latency and long retention time at 7, 14 and 28 days (all P<0.01), increased the α7nAChR protein expression, ACh content, and ChAT activity, and decreased AChE activity in MCAO rats (all P<0.01). ECH significantly decreased MDA content and increased the GSH content, SOD, and CAT activities compared with MCAO rats (all P<0.05). ECH suppressed neuronal apoptosis by reducing TUNEL-positive cells and also enhanced autophagy in MCAO rats (all P<0.01).
CONCLUSION
ECH treatment helped improve cognitive impairment by attenuating neurological damage and enhancing autophagy in MCAO rats.
Acetylcholinesterase
;
Animals
;
Autophagy
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Cognitive Dysfunction/drug therapy*
;
Glutathione/metabolism*
;
Glycosides
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Neuroprotective Agents/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury/drug therapy*
;
Stroke/drug therapy*
;
Superoxide Dismutase/metabolism*
;
alpha7 Nicotinic Acetylcholine Receptor
8.Establishment of a gp120 transgenic mouse model with 7 nAChR knockout.
Tongtong HU ; Zelong GONG ; Yu WAN ; Yubin LI ; Xuefeng GAO ; Jingxian LUN ; Shenghe HUANG ; Hong CAO
Journal of Southern Medical University 2020;40(8):1184-1191
OBJECTIVE:
To construct a HIV-1 gp120 transgenic mouse model (gp120) with 7 nicotinic acetylcholine receptor (7nAChR) gene knockout.
METHODS:
The 7nAChR gene knockout mice (7R) were crossed with HIV-1gp120 transgenic mice (gp120) to generate F1 generation mice. We selected the F1 mice with the genotype of 7R/gp120 to mate to obtain the F2 mice. The genotypes of the F3 mice were identified by PCR, and the protein expressions in the double transgenic animal model was analyzed by immunohistochemistry. BV2 cells were treated with gp120 protein and 7nAChR inhibitor, and the expressions of IL-1β and TNF- were detected using ELISA.
RESULTS:
The results of PCR showed the bands of the expected size in F3 mice. Two F3 mice with successful double gene editing (7R/gp120) were obtained, and immunohistochemistry showed that the brain tissue of the mice did not express 7 nAChR but with high gp120 protein expression. In the cell experiment, treatment with gp120 promoted the secretion of IL-1β and TNF- in BV2 cells, while inhibition of 7nAChR significantly decreased the expression of IL-1β and TNF- ( < 0.001).
CONCLUSIONS
By mating gp120 Tg mice with 7R mice, we obtained gp120 transgenic mice with 7nAChR gene deletion, which serve as a new animal model for exploring the role of 7nAChR in gp120-induced neurotoxicity.
Animals
;
Disease Models, Animal
;
Glycoproteins
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Tumor Necrosis Factor-alpha
;
alpha7 Nicotinic Acetylcholine Receptor
;
metabolism
9.Cholinergic anti-inflammatory pathway and its role in treatment of sepsis.
Shuangfeng ZI ; Jinghui LI ; Lei LIU ; Furong LIU
Journal of Central South University(Medical Sciences) 2020;45(1):68-73
The cholinergic anti-inflammatory pathway (CAP) is a neuro-immunomodulatory pathway,in which acetylcholine (ACh) released by the interaction of vagal nerves with α7 nicotinic acetylcholine receptor (α7nAChR),which prevents the synthesis and release of pro-inflammatory cytokines and ultimately regulates the local or systemic inflammatory response in a feedback manner. It has been shown that there are many possible effective treatments for sepsis, including vagus nerve stimulation by physical therapy, drugs such as acetylcholine receptor agonist and ultrasound therapy.
Acetylcholine
;
Humans
;
Inflammation
;
Neuroimmunomodulation
;
Sepsis
;
Vagus Nerve Stimulation
;
alpha7 Nicotinic Acetylcholine Receptor
10.Melatonin inhibits nicotinic acetylcholine receptor functions in bovine chromaffin cells
Su Hyun JO ; Seung Hyun LEE ; Kyong Tai KIM ; Se Young CHOI
International Journal of Oral Biology 2019;44(2):50-54
Melatonin is a neurotransmitter that modulates various physiological phenomena including regulation and maintenance of the circadian rhythm. Nicotinic acetylcholine receptors (nAChRs) play an important role in oral functions including orofacial muscle contraction, salivary secretion, and tooth development. However, knowledge regarding physiological crosstalk between melatonin and nAChRs is limited. In the present study, the melatonin-mediated modulation of nAChR functions using bovine adrenal chromaffin cells, a representative model for the study of nAChRs, was investigated. Melatonin inhibited the nicotinic agonist dimethylphenylpiperazinium (DMPP) iodide-induced cytosolic free Ca²⁺ concentration ([Ca²⁺](i)) increase and norepinephrine secretion in a concentration-dependent manner. The inhibitory effect of melatonin on the DMPP-induced [Ca²⁺](i) increase was observed when the melatonin treatment was performed simultaneously with DMPP. The results indicate that melatonin inhibits nAChR functions in both peripheral and central nervous systems.
Calcium Signaling
;
Central Nervous System
;
Chromaffin Cells
;
Circadian Rhythm
;
Cytosol
;
Dimethylphenylpiperazinium Iodide
;
Melatonin
;
Muscle Contraction
;
Neurotransmitter Agents
;
Nicotinic Agonists
;
Norepinephrine
;
Physiological Phenomena
;
Receptors, Nicotinic
;
Tooth

Result Analysis
Print
Save
E-mail