1.Analysis of a case of Multiple pterygium syndrome due to a novel variant of CHRNG gene.
Yiru CHEN ; Tianying NONG ; Weizhe SHI ; Jiangui LI ; Xuejiao DING ; Yue LI ; Mingwei ZHU ; Hongwen XU
Chinese Journal of Medical Genetics 2023;40(6):686-690
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a child with multiple pterygium syndrome (MPS).
METHODS:
A child with MPS who was treated at the Orthopedics Department of Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University on August 19, 2020 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and her parents were also collected. Whole exome sequencing (WES) was carried out for the child. Candidate variant was validated by Sanger sequencing of her parents and bioinformatic analysis.
RESULTS:
The child, an 11-year-old female, had a complain of "scoliosis found 8 years before and aggravated with unequal shoulder height for 1 year". WES results revealed that she has carried a homozygous c.55+1G>C splice variant of the CHRNG gene, for which both of her parents were heterozygous carriers. By bioinformatic analysis, the c.55+1G>C variant has not been recorded by the CNKI, Wanfang data knowledge service platform and HGMG databases. Analysis with Multain online software suggested that the amino acid encoded by this site is highly conserved among various species. As predicted with the CRYP-SKIP online software, the probability of activation and skipping of the potential splice site in exon 1 caused by this variant is 0.30 and 0.70, respectively. The child was diagnosed with MPS.
CONCLUSION
The CHRNG gene c.55+1G>C variant probably underlay the MPS in this patient.
Humans
;
Child
;
Female
;
Abnormalities, Multiple/genetics*
;
Malignant Hyperthermia/genetics*
;
Skin Abnormalities/genetics*
;
Heterozygote
;
Mutation
;
Receptors, Nicotinic/genetics*
2.Melatonin inhibits nicotinic acetylcholine receptor functions in bovine chromaffin cells
Su Hyun JO ; Seung Hyun LEE ; Kyong Tai KIM ; Se Young CHOI
International Journal of Oral Biology 2019;44(2):50-54
Melatonin is a neurotransmitter that modulates various physiological phenomena including regulation and maintenance of the circadian rhythm. Nicotinic acetylcholine receptors (nAChRs) play an important role in oral functions including orofacial muscle contraction, salivary secretion, and tooth development. However, knowledge regarding physiological crosstalk between melatonin and nAChRs is limited. In the present study, the melatonin-mediated modulation of nAChR functions using bovine adrenal chromaffin cells, a representative model for the study of nAChRs, was investigated. Melatonin inhibited the nicotinic agonist dimethylphenylpiperazinium (DMPP) iodide-induced cytosolic free Ca²⁺ concentration ([Ca²⁺](i)) increase and norepinephrine secretion in a concentration-dependent manner. The inhibitory effect of melatonin on the DMPP-induced [Ca²⁺](i) increase was observed when the melatonin treatment was performed simultaneously with DMPP. The results indicate that melatonin inhibits nAChR functions in both peripheral and central nervous systems.
Calcium Signaling
;
Central Nervous System
;
Chromaffin Cells
;
Circadian Rhythm
;
Cytosol
;
Dimethylphenylpiperazinium Iodide
;
Melatonin
;
Muscle Contraction
;
Neurotransmitter Agents
;
Nicotinic Agonists
;
Norepinephrine
;
Physiological Phenomena
;
Receptors, Nicotinic
;
Tooth
3.A Novel Immunomodulatory Mechanism Dependent on Acetylcholine Secreted by Human Bone Marrow-derived Mesenchymal Stem Cells
Tac Ghee YI ; Yun Kyoung CHO ; Hyun Joo LEE ; Junghee KIM ; Myung Shin JEON ; Dong Sik HAM ; Woo Cheol KIM ; Sun U SONG
International Journal of Stem Cells 2019;12(2):315-330
BACKGROUND AND OBJECTIVES: Mesenchymal stem cells (MSCs) are used to treat autoimmune or inflammatory diseases. Our aim was to determine the immunomodulatory mechanisms elicited by MSCs during inflammation. METHODS AND RESULTS: We cocultured MSCs with peripheral blood mononuclear cells for a mixed lymphocyte reaction or stimulated them by phytohemagglutinin. Morphological changes of MSCs and secretion of acetylcholine (ACh) from MSCs were measured. The effects of an ACh antagonist and ACh agonist on lymphocyte proliferation and proinflammatory-cytokine production were determined. The inflammatory milieu created by immune-cell activation caused MSCs to adopt a neuronlike phenotype and induced them to release ACh. Additionally, nicotinic acetylcholine receptors (nAChRs) were upregulated in activated peripheral blood mononuclear cells. We observed that ACh bound to nAChR on activated immune cells and led to the inhibition of lymphocyte proliferation and of proinflammatory-cytokine production. MSC-mediated immunosuppression through ACh activity was reversed by an ACh antagonist called α-bungarotoxin, and lymphocyte proliferation was inhibited by an ACh agonist, ACh chloride. CONCLUSIONS: Our findings point to a novel immunomodulatory mechanism in which ACh secreted by MSCs under inflammatory conditions might modulate immune cells. This study may provide a novel method for the treatment of autoimmune diseases by means of MSCs.
Acetylcholine
;
Autoimmune Diseases
;
Humans
;
Immunosuppression
;
Inflammation
;
Lymphocyte Culture Test, Mixed
;
Lymphocytes
;
Mesenchymal Stromal Cells
;
Methods
;
Phenotype
;
Receptors, Nicotinic
4.Neuroimmune interactions and kidney disease
Sho HASEGAWA ; Tsuyoshi INOUE ; Reiko INAGI
Kidney Research and Clinical Practice 2019;38(3):282-294
The autonomic nervous system plays critical roles in maintaining homeostasis in humans, directly regulating inflammation by altering the activity of the immune system. The cholinergic anti-inflammatory pathway is a well-studied neuroimmune interaction involving the vagus nerve. CD4-positive T cells expressing β2 adrenergic receptors and macrophages expressing the alpha 7 subunit of the nicotinic acetylcholine receptor in the spleen receive neurotransmitters such as norepinephrine and acetylcholine and are key mediators of the cholinergic anti-inflammatory pathway. Recent studies have demonstrated that vagus nerve stimulation, ultrasound, and restraint stress elicit protective effects against renal ischemia-reperfusion injury. These protective effects are induced primarily via activation of the cholinergic anti-inflammatory pathway. In addition to these immunological roles, nervous systems are directly related to homeostasis of renal physiology. Whole-kidney three-dimensional visualization using the tissue clearing technique CUBIC (clear, unobstructed brain/body imaging cocktails and computational analysis) has illustrated that renal sympathetic nerves are primarily distributed around arteries in the kidneys and denervated after ischemia-reperfusion injury. In contrast, artificial renal sympathetic denervation has a protective effect against kidney disease progression in murine models. Further studies are needed to elucidate how neural networks are involved in progression of kidney disease.
Acetylcholine
;
Arteries
;
Autonomic Nervous System
;
Cholinergic Neurons
;
Homeostasis
;
Humans
;
Immune System
;
Inflammation
;
Kidney Diseases
;
Kidney
;
Macrophages
;
Nervous System
;
Neurotransmitter Agents
;
Norepinephrine
;
Optogenetics
;
Physiology
;
Receptors, Adrenergic
;
Receptors, Nicotinic
;
Reperfusion Injury
;
Spleen
;
Sympathectomy
;
Sympathetic Nervous System
;
T-Lymphocytes
;
Ultrasonography
;
Vagus Nerve
;
Vagus Nerve Stimulation
5.Basal Forebrain Cholinergic-induced Activation of Cholecystokinin Inhibitory Neurons in the Basolateral Amygdala
Experimental Neurobiology 2019;28(3):320-328
The basolateral amygdala (BLA) receives dense projections from cholinergic neurons of the basal forebrain. Acetylcholine can contributes to amygdala-dependent behaviors: formation and extinction of fear memory and appetitive instrumental learning. However, the cholinergic mechanism at the circuit level has not been defined yet. We demonstrated that cholinergic-induced di-synaptic inhibition of BLA pyramidal neurons exhibits a retrograde form of short-term synaptic inhibition, depolarization-induced suppression of inhibition (DSI). Activation of nicotinic receptors was sufficient to evoke action potentials in cholecystokinin (CCK)-positive inhibitory neurons, which strongly inhibit pyramidal neurons through their perisomatic synapses. Our cell type-specific monosynaptic retrograde tracing also revealed that CCK neurons are innervated by basal forebrain cholinergic neurons. Therefore, our data indicated that CCK inhibitory neurons mediate the cholinergic-induced di-synaptic inhibition of BLA pyramidal neurons.
Acetylcholine
;
Action Potentials
;
Basal Forebrain
;
Basolateral Nuclear Complex
;
Cholecystokinin
;
Cholinergic Neurons
;
Conditioning, Operant
;
Iontophoresis
;
Memory
;
Neurons
;
Pyramidal Cells
;
Receptors, Nicotinic
;
Synapses
6.The role of central cholinergic system in epilepsy.
Ying WANG ; Yi WANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2017;46(1):15-21
Epilepsy is a chronic neurological disorder, which is not only related to the imbalance between excitatory glutamic neurons and inhibitory GABAergic neurons, but also related to abnormal central cholinergic regulation. This article summarizes the scientific background and experimental data about cholinergic dysfunction in epilepsy from both cellular and network levels, further discusses the exact role of cholinergic system in epilepsy. In the cellular level, several types of epilepsy are believed to be associated with aberrant metabotropic muscarinic receptors in several different brain areas, while the mutations of ionotropic nicotinic receptors have been reported to result in a specific type of epilepsy-autosomal dominant nocturnal frontal lobe epilepsy. In the network level, cholinergic projection neurons as well as their interaction with other neurons may regulate the development of epilepsy, especially the cholinergic circuit from basal forebrain to hippocampus, while cholinergic local interneurons have not been reported to be associated with epilepsy. With the development of optogenetics and other techniques, dissect and regulate cholinergic related epilepsy circuit has become a hotspot of epilepsy research.
Acetylcholine
;
physiology
;
Basal Forebrain
;
pathology
;
Brain Chemistry
;
genetics
;
physiology
;
Cholinergic Neurons
;
chemistry
;
classification
;
pathology
;
physiology
;
Epilepsy
;
genetics
;
pathology
;
physiopathology
;
Epilepsy, Frontal Lobe
;
genetics
;
GABAergic Neurons
;
physiology
;
Hippocampus
;
pathology
;
Humans
;
Mutation
;
genetics
;
physiology
;
Neurons
;
Non-Neuronal Cholinergic System
;
genetics
;
physiology
;
Receptors, Muscarinic
;
genetics
;
physiology
;
Receptors, Nicotinic
;
genetics
;
physiology
;
Synaptic Transmission
;
genetics
;
physiology
7.Factors that affect the onset of action of non-depolarizing neuromuscular blocking agents.
Yong Byum KIM ; Tae Yun SUNG ; Hong Seuk YANG
Korean Journal of Anesthesiology 2017;70(5):500-510
Neuromuscular blockade plays an important role in the safe management of patient airways, surgical field improvement, and respiratory care. Rapid-sequence induction of anesthesia is indispensable to emergency surgery and obstetric anesthesia, and its purpose is to obtain a stable airway, adequate depth of anesthesia, and appropriate respiration within a short period of time without causing irritation or damage to the patient. There has been a continued search for new neuromuscular blocking drugs (NMBDs) with a rapid onset of action. Factors that affect the onset time include the potency of the NMBDs, the rate of NMBDs reaching the effect site, the onset time by dose control, metabolism and elimination of NMBDs, buffered diffusion to the effect site, nicotinic acetylcholine receptor subunit affinity, drugs that affect acetylcholine (ACh) production and release at the neuromuscular junction, drugs that inhibit plasma cholinesterase, presynaptic receptors responsible for ACh release at the neuromuscular junction, anesthetics or drugs that affect muscle contractility, site and methods for monitoring neuromuscular function, individual variability, and coexisting disease. NMBDs with rapid onset without major adverse events are expected in the next few years, and the development of lower potency NMBDs will continue. Anesthesiologists should be aware of the use of NMBDs in the management of anesthesia. The choice of NMBD and determination of the appropriate dosage to modulate neuromuscular blockade characteristics such as onset time and duration of neuromuscular blockade should be considered along with factors that affect the effects of the NMBDs. In this review, we discuss the factors that affect the onset time of NMBDs.
Acetylcholine
;
Anesthesia
;
Anesthesia, Obstetrical
;
Anesthetics
;
Cholinesterases
;
Diffusion
;
Drug Interactions
;
Emergencies
;
Humans
;
Metabolism
;
Neuromuscular Blockade*
;
Neuromuscular Blocking Agents*
;
Neuromuscular Junction
;
Neuromuscular Monitoring
;
Pharmacokinetics
;
Plasma
;
Receptors, Nicotinic
;
Receptors, Presynaptic
;
Respiration
8.The crystal structure of Ac-AChBP in complex with α-conotoxin LvIA reveals the mechanism of its selectivity towards different nAChR subtypes.
Manyu XU ; Xiaopeng ZHU ; Jinfang YU ; Jinpeng YU ; Sulan LUO ; Xinquan WANG
Protein & Cell 2017;8(9):675-685
The α3* nAChRs, which are considered to be promising drug targets for problems such as pain, addiction, cardiovascular function, cognitive disorders etc., are found throughout the central and peripheral nervous system. The α-conotoxin (α-CTx) LvIA has been identified as the most selective inhibitor of α3β2 nAChRs known to date, and it can distinguish the α3β2 nAChR subtype from the α6/α3β2β3 and α3β4 nAChR subtypes. However, the mechanism of its selectivity towards α3β2, α6/α3β2β3, and α3β4 nAChRs remains elusive. Here we report the co-crystal structure of LvIA in complex with Aplysia californica acetylcholine binding protein (Ac-AChBP) at a resolution of 3.4 Å. Based on the structure of this complex, together with homology modeling based on other nAChR subtypes and binding affinity assays, we conclude that Asp-11 of LvIA plays an important role in the selectivity of LvIA towards α3β2 and α3/α6β2β3 nAChRs by making a salt bridge with Lys-155 of the rat α3 subunit. Asn-9 lies within a hydrophobic pocket that is formed by Met-36, Thr-59, and Phe-119 of the rat β2 subunit in the α3β2 nAChR model, revealing the reason for its more potent selectivity towards the α3β2 nAChR subtype. These results provide molecular insights that can be used to design ligands that selectively target α3β2 nAChRs, with significant implications for the design of new therapeutic α-CTxs.
Animals
;
Aplysia
;
Binding Sites
;
Conotoxins
;
chemistry
;
Crystallography, X-Ray
;
Humans
;
Protein Structure, Quaternary
;
Receptors, Nicotinic
;
chemistry
9.Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents.
Byung Hwan LEE ; Sun Hye CHOI ; Hyeon Joong KIM ; Seok Won JUNG ; Sung Hee HWANG ; Mi Kyung PYO ; Hyewhon RHIM ; Hyoung Chun KIM ; Ho Kyoung KIM ; Sang Mok LEE ; Seung Yeol NAH
Biomolecules & Therapeutics 2016;24(4):410-417
Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (I(ACh)) in Xenopus oocytes expressing the α7 nAChR. I(ACh) was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced I(ACh), whereas quercetin glycosides inhibited I(ACh). Quercetin glycosides mediated an inhibition of I(ACh), which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of I(ACh) inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated I(ACh) enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated I(ACh) inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner.
Acetylcholine*
;
Carbohydrates
;
Flavonoids
;
Fruit
;
Glycosides*
;
Humans*
;
Oocytes
;
Quercetin*
;
Receptors, Nicotinic
;
RNA
;
Rutin
;
Vegetables
;
Xenopus
10.Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors.
Jing HAN ; Dong Sheng WANG ; Shui Bing LIU ; Ming Gao ZHAO
Biomolecules & Therapeutics 2016;24(3):291-297
Cytisine (CYT), a partial agonist of α4β2-nicotinic receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total distances in open field test, and the prolonged duration of immobility in tail suspension test and forced swimming test. Treatment with CYT for two weeks notably relieved the depression-like behaviors in the UCMS mice. Next, proteins related to depressive disorder in the brain region of hippocampus and amygdala were analyzed to elucidate the underlying mechanisms of CYT. CYT significantly reversed the decreases of 5-HT1A, BDNF, and mTOR levels in the hippocampus and amygdala. These results imply that CYT may act as a potential anti-depressant in the animals under chronic stress.
Amygdala
;
Animals
;
Brain
;
Brain-Derived Neurotrophic Factor
;
Depression
;
Depressive Disorder
;
Hindlimb Suspension
;
Hippocampus
;
Mice
;
Physical Exertion
;
Receptors, Nicotinic*

Result Analysis
Print
Save
E-mail