1.The role of microglia activated by the deletion of immune checkpoint receptor CD200R1 gene in a mouse model of Parkinson's disease.
Jia-Li GUO ; Tao-Ying HUANG ; Zhen ZHANG ; Kun NIU ; Xarbat GONGBIKAI ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2025;77(1):13-24
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1-/- mice. The primary microglia cells of wild-type and CD200R1-/- mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis in vitro by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1-/- mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Animals
;
Microglia/physiology*
;
Mice
;
Phagocytosis
;
Parkinson Disease/genetics*
;
Disease Models, Animal
;
Receptors, Cell Surface/physiology*
;
Dopaminergic Neurons/pathology*
;
Antigens, CD/metabolism*
;
Gene Deletion
;
Substantia Nigra
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Cells, Cultured
;
Male
;
alpha-Synuclein
;
CD68 Molecule
;
Orexin Receptors
2.Mechanism of Zuogui Pills in regulating bone metabolism through OXT/OXTR feed-forward loop based on theory of "all marrows dominated by brain".
Yan-Chen FENG ; Ya-Li LIU ; Xue DANG ; Lu SUN ; Jin-Yao LI ; Jia-Bin SONG ; Shun-Zhi YANG ; Fei-Xiang LIU
China Journal of Chinese Materia Medica 2025;50(10):2761-2768
Grounded in the theory of "all marrows dominated by brain", this study explored the therapeutic mechanism of Zuogui Pills in modulating the oxytocin(OXT)/oxytocin receptor(OXTR) feed-forward loop in the treatment of postmenopausal osteoporosis(PMOP). A PMOP rat model was established using ovariectomy, and 70 Sprague-Dawley female rats were randomly divided into the following groups: sham operation group, model group, estradiol group(17β-estradiol, 0.05 mg·kg~(-1)·d~(-1)), Zuogui Pills low, medium, and high dose groups(0.2, 0.4, 0.8 g·kg~(-1)·d~(-1), respectively), and an antagonist group(atosiban 0.9 mg·kg~(-1)·d~(-1) + 17β-estradiol 0.05 mg·kg~(-1)·d~(-1) + Zuogui Pills 0.4 g·kg~(-1)·d~(-1)). After 12 weeks of model establishment, treatment was administered by gavage once daily for another 12 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of estrogen(E_2), OXT, tartrate-resistant acid phosphatase(TRACP-5b), and bone alkaline phosphatase(BALP). Histopathological changes in the left distal femur were observed through hematoxylin and eosin(HE) staining. Micro-computed tomography(micro-CT) was used to analyze the microstructure of the right distal femur. Western blot was employed to detect the expression levels of OXTR, small GTP-binding protein Ras, Raf1 proto-oncogene(Raf1), mitogen-activated protein kinase kinase 1/2(MEK1/2), and extracellular signal-regulated kinase 1/2(ERK1/2), and their phosphorylated forms in tibial tissues. Compared with the model group, the Zuogui Pills medium and high dose groups showed significantly increased levels of E_2, OXT, and BALP, with a notable decrease in TRACP-5b levels. Morphologically, the trabeculae in the left distal femur were more tightly arranged. The fibrous structure in the right distal femur was significantly improved in the Zuogui Pills high dose group. Additionally, the expression of OXTR, Ras, p-Raf1, p-MEK1/2, and p-ERK1/2 proteins in tibial tissues was significantly increased. The therapeutic effect of the Zuogui Pills high dose group was partially inhibited when an OXTR antagonist was administered. These findings suggest that Zuogui Pills can regulate the OXT/OXTR feed-forward loop, activate the phosphorylation of the downstream Ras/Raf1/MEK/ERK signaling pathway, and ultimately improve bone mineral density, thereby exerting therapeutic effects in PMOP.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Oxytocin/genetics*
;
Receptors, Oxytocin/genetics*
;
Humans
;
Osteoporosis, Postmenopausal/genetics*
;
Bone and Bones/drug effects*
;
Brain/drug effects*
;
Bone Marrow/drug effects*
3.The SPARC-related modular calcium binding 1 ( Smoc1 ) regulated by androgen is required for mouse gubernaculum development and testicular descent.
Zhi-Yi ZHAO ; Yong SIOW ; Ling-Yun LIU ; Xian LI ; Hong-Liang WANG ; Zhen-Min LEI
Asian Journal of Andrology 2025;27(1):44-51
Testicular descent occurs in two consecutive stages: the transabdominal stage and the inguinoscrotal stage. Androgens play a crucial role in the second stage by influencing the development of the gubernaculum, a structure that pulls the testis into the scrotum. However, the mechanisms of androgen actions underlying many of the processes associated with gubernaculum development have not been fully elucidated. To identify the androgen-regulated genes, we conducted large-scale gene expression analyses on the gubernaculum harvested from luteinizing hormone/choriogonadotropin receptor knockout ( Lhcgr KO) mice, an animal model of inguinoscrotal testis maldescent resulting from androgen deficiency. We found that the expression of secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 ( Smoc1 ) was the most severely suppressed at both the transcript and protein levels, while its expression was the most dramatically induced by testosterone administration in the gubernacula of Lhcgr KO mice. The upregulation of Smoc1 expression by testosterone was curtailed by the addition of an androgen receptor antagonist, flutamide. In addition, in vitro studies demonstrated that SMOC1 modestly but significantly promoted the proliferation of gubernacular cells. In the cultures of myogenic differentiation medium, both testosterone and SMOC1 enhanced the expression of myogenic regulatory factors such as paired box 7 ( Pax7 ) and myogenic factor 5 ( Myf5 ). After short-interfering RNA-mediated knocking down of Smoc1 , the expression of Pax7 and Myf5 diminished, and testosterone alone did not recover, but additional SMOC1 did. These observations indicate that SMOC1 is pivotal in mediating androgen action to regulate gubernaculum development during inguinoscrotal testicular descent.
Animals
;
Male
;
Mice
;
Testis/growth & development*
;
Mice, Knockout
;
Androgens/pharmacology*
;
Testosterone/pharmacology*
;
Receptors, LH/metabolism*
;
Calcium-Binding Proteins/metabolism*
4.Type II Leydig cell hypoplasia caused by LHCGR gene mutation: a case report.
Ke-Xin JIN ; Zhe SU ; Yan-Hua JIAO ; Li-Li PAN ; Xian-Ping JIANG ; Jian-Chun YIN ; Jia-Qiang LI
Chinese Journal of Contemporary Pediatrics 2025;27(2):225-228
The patient, assigned female at birth and aged 1 year and 7 months, presented with clinical manifestations of 46,XY disorders of sex development. The external genitalia exhibited a severely undermasculinized phenotype. Laboratory tests and gonadal biopsy indicated poor Leydig cell function and good Sertoli cell function. Genetic testing revealed compound heterozygous mutations of c.867-2A>C and c.547G>A (p.G183R) in the LHCGR gene. The patient was ultimately diagnosed with type II Leydig cell hypoplasia. Type II Leydig cell hypoplasia presents a broad spectrum of clinical phenotypes, characterized by a lack of parallel function between Leydig cells and Sertoli cells, and significant individual variability in spermatogenesis and gender assignment. This condition should be considered when there is poor Leydig cell function but good development of Wolffian duct derivatives.
Female
;
Humans
;
Infant
;
Disorder of Sex Development, 46,XY/genetics*
;
Leydig Cells/pathology*
;
Mutation
;
Receptors, LH/genetics*
;
Testis/abnormalities*
5.Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain.
Hao LI ; Ying LI ; Ting WANG ; Shen LI ; Heli LIU ; Shuyi NING ; Wei SHEN ; Zhe ZHAO ; Haitao WU
Neuroscience Bulletin 2025;41(2):224-242
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Animals
;
Receptors, Oxytocin/metabolism*
;
Male
;
Brain/growth & development*
;
Mice
;
Mice, Inbred C57BL
;
Neurons/metabolism*
;
Single-Cell Analysis
;
Gene Expression Regulation, Developmental
;
RNA, Messenger/metabolism*
;
Animals, Newborn
6.Complexity of the Hypothalamic Oxytocin System and its Involvement in Brain Functions and Diseases.
Neuroscience Bulletin 2025;41(7):1267-1288
Oxytocin is classically termed a 'prosocial neuropeptide' because of its evolutionarily conserved role in promoting affiliative behaviors. Endogenous oxytocin is mainly synthesized by hypothalamic oxytocin neurons and signals through oxytocin receptors (OxtRs). Recent studies with cell type-specific and circuit-specific interrogation have uncovered that oxytocin signals exert pleiotropic neuromodulatory effects through anatomically widespread axonal projections and ubiquitously distributed OxtRs. Dysfunctions of oxytocin signals are closely relevant to brain disorders/diseases. While intranasal oxytocin administration has been demonstrated to be one potential strategy to alleviate some brain disorders/diseases, such as autism, obesity, and anxiety, conflicting clinical outcomes highlight the imperative for precision-targeted neuromodulation strategies. Dissecting the molecular, cellular, and neural circuitry mechanisms underlying oxytocinergic modulation is a prerequisite to achieving this goal. This review provides an overview of the current understanding of the oxytocin system in terms of anatomical structure, neuronal modulation, and signal pathways, and discusses the modulatory roles of oxytocin in social, feeding, emotional, and sensory-related brain functions and brain diseases.
Oxytocin/metabolism*
;
Humans
;
Animals
;
Hypothalamus/physiology*
;
Brain/physiology*
;
Brain Diseases/physiopathology*
;
Receptors, Oxytocin/metabolism*
7.Sex Differences in Pain Contagion Determined by the Balance of Oxytocin and Corticosterone in the Anterior Cingulate Cortex in Rodents.
Zhiyuan XIE ; Wenxi YUAN ; Lingbo ZHOU ; Jie XIAO ; Huabao LIAO ; Jiang-Jian HU ; Xue-Jun SONG
Neuroscience Bulletin 2025;41(12):2167-2183
Empathy is crucial for communication and survival for individuals. Whether empathy in pain contagion shows sex differences and its underlying mechanisms remain unclear. Here, we report that pain contagion can occur in stranger female rats, but not in stranger males. Blocking oxytocin receptors in the anterior cingulate cortex (ACC) suppressed pain contagion in female strangers, while oxytocin administration induced pain contagion in male strangers. In vitro, corticosterone reduces neuronal activation by oxytocin. During male stranger interactions, higher corticosterone decreased oxytocin receptor-positive neuronal activity in the ACC, suppressing pain contagion. These findings highlight the role of oxytocin in pain contagion and suggest that sex differences in empathy may be determined by the balance of oxytocin and corticosterone in the ACC. This study suggests an approach for the treatment of certain mental disorders associated with abnormal empathy, such as autism and depression.
Animals
;
Oxytocin/pharmacology*
;
Gyrus Cinguli/drug effects*
;
Male
;
Female
;
Corticosterone/pharmacology*
;
Empathy/drug effects*
;
Sex Characteristics
;
Receptors, Oxytocin/antagonists & inhibitors*
;
Pain/psychology*
;
Rats
;
Rats, Sprague-Dawley
;
Neurons/metabolism*
8.Decreased neurotensin induces ovulatory dysfunction via the NTSR1/ERK/EGR1 axis in polycystic ovary syndrome.
Dongshuang WANG ; Meiling ZHANG ; Wang-Sheng WANG ; Weiwei CHU ; Junyu ZHAI ; Yun SUN ; Zi-Jiang CHEN ; Yanzhi DU
Frontiers of Medicine 2025;19(1):149-169
Polycystic ovary syndrome (PCOS) is the predominant cause of subfertility in reproductive-aged women; however, its pathophysiology remains unknown. Neurotensin (NTS) is a member of the gut-brain peptide family and is involved in ovulation; its relationship with PCOS is unclear. Here, we found that NTS expression in ovarian granulosa cells and follicular fluids was markedly decreased in patients with PCOS. In the in vitro culture of cumulus-oocyte complexes, the neurotensin receptor 1 (NTSR1) antagonist SR48692 blocked cumulus expansion and oocyte meiotic maturation by inhibiting metabolic cooperation and damaging the mitochondrial structure in oocytes and surrounding cumulus cells. Furthermore, the ERK1/2-early growth response 1 pathway was found to be a key downstream mediator of NTS/NTSR1 in the ovulatory process. Animal studies showed that in vivo injection of SR48692 in mice reduced ovulation efficiency and contributed to irregular estrus cycles and polycystic ovary morphology. By contrast, NTS partially ameliorated the ovarian abnormalities in mice with dehydroepiandrosterone-induced PCOS. Our findings highlighted the critical role of NTS reduction and consequent abnormal NTSR1 signaling in the ovulatory dysfunction of PCOS, suggesting a potential strategy for PCOS treatment.
Polycystic Ovary Syndrome/physiopathology*
;
Female
;
Animals
;
Neurotensin/metabolism*
;
Receptors, Neurotensin/antagonists & inhibitors*
;
Mice
;
Ovulation/drug effects*
;
Humans
;
Granulosa Cells/metabolism*
;
Adult
;
Oocytes/metabolism*
;
MAP Kinase Signaling System
;
Signal Transduction
;
Follicular Fluid/metabolism*
;
Disease Models, Animal
;
Gonadotropin-Releasing Hormone/analogs & derivatives*
9.Revisiting the vasopressin V2 receptor.
Meng LI ; Wei-Dong WANG ; Chun-Ling LI
Acta Physiologica Sinica 2024;76(6):893-907
Arginine vasopressin (AVP) plays a crucial role in various physiological processes including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. AVP acts through three distinct receptor subtypes, i.e., V1a, V1b, and V2. Among them, the vasopressin V2 receptor (V2R) was initially discovered in the principal cells of renal collecting ducts, where it is primarily involved in regulating water reabsorption. However, in recent years, with the advancement of imaging and bioinformatics techniques, there has been a deeper understanding of the microstructure, protein binding capacity, and specific tissue distribution of V2R. Additionally, the pathogenic roles and target effects of V2R in various diseases have been uncovered through ectopic overexpression, activation, or antagonism. This paper aims to provide a brief overview of current research status on the physiological functions, pathophysiological mechanisms, and drug development related to V2R in recent years.
Receptors, Vasopressin/physiology*
;
Humans
;
Animals
;
Antidiuretic Hormone Receptor Antagonists
;
Arginine Vasopressin/physiology*

Result Analysis
Print
Save
E-mail