1.The role of CD4+ CD25+ Treg in the mechanism of autoimmune auditory neuropathy in SD rats.
Yuan ZHOU ; Fan SONG ; Jun LUO
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):225-232
Objective: To investigate the role of CD4+CD25+regulatory cell (CD4+CD25+Treg) in auditory neuropathy (AN) using a rat model of autoimmune auditory neuropathy. Methods: The SD rats were immunized with P0 protein emulsified in complete Freunds adjuvant for 8 weeks. The number of CD4+CD25+Treg in peripheral blood and cochlea and the expression of <i>Foxp3i> gene in cochlea were detected respectively 2, 4, 6 and 8 weeks after the immunization with P0 protein in rats. Then CD4+CD25+Treg were transferred intravenously to the AN rats at 2, 4, 6 and 8 weeks of the immunization, respectively. The change of auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were detected, and the morphological changes in the inner ear were investigated. Results: The number of CD4+CD25+Treg in the peripheral blood of AN rats decreased gradually after 2, 4, 6 and 8 weeks of P0 protein immunization. The number of CD4+CD25+Treg in cochlea gradually increased with the prolongation of immunization time, but the expression of <i>Foxp3i> gene in cochlea gradually decreased over time. After intravenous transplantation of CD4+CD25+Treg in AN rats, the threshold of ABR response decreased, and DPOAE had no significant change. The number of spiral ganglion neurons in cochlea increased, and hair cells had no significant change under electron microscope. Conclusions: The decrease in the number and function of CD4+CD25+Treg reduces its inhibitory effect on autoimmune response and promotes the occurrence of autoimmune auditory neuropathy in AN rats. Adoptive transfer of CD4+CD25+Treg can reduce the autoimmune response and promote the recovery of autoimmune auditory neuropathy.
Animals
;
Rats
;
Forkhead Transcription Factors
;
Myelin P0 Protein
;
Rats, Sprague-Dawley
;
T-Lymphocytes, Regulatory
;
CD4 Antigens/immunology*
;
Interleukin-2 Receptor alpha Subunit/immunology*
2.The Effects and Regulatory Mechanism of Targeting CXC Chemokine Receptor 1/2 Combined with Ara-C on the Malignant Biological Behaviors of U937 Cells of Acute Myeloid Leukemia.
Yan-Quan LIU ; Jian-Zhen SHEN ; Yue YIN ; Yu-Ting CHEN ; Hui YANG ; Huan-Wen TANG
Journal of Experimental Hematology 2023;31(2):364-376
OBJECTIVE:
To investigate and analyze the effect of CXC chemokine receptor 1/2 (CXCR1/2) targeting inhibitor Reparixin combined with cytarabine (Ara-C) on the malignant biological behaviors of acute myeloid leukemia cells and its effect on the expression of the CXCR family, while exploring the accompanying molecular mechanism, providing scientific basis and reference for new molecular markers and targeted therapy for AML.
METHODS:
Acute myeloid leukemia U937 cells were treated with different concentrations of Reparixin, Ara-C alone or in combination, and the cell morphology was observed under an inverted microscope; Wright-Giemsa staining was used to detect cell morphological changes; CCK-8 method was used to detect cell proliferation; the ability of cell invasion was detected by Transwell chamber method; the ability of colony formation was detected by colony formation assay; cell apoptosis was detected by Hoechst 33258 fluorescent staining and Annexin V/PI double-staining flow cytometry; monodansylcadaverine(MDC) staining was used to detect cell autophagy; the expression of apoptosis, autophagy and related signaling pathway proteins was detected by Western blot and the expression changes of CXCR family were detected by real-time quantitative polymerase chain reaction (qRT-PCR).
RESULTS:
Reparixin could inhibit the proliferation, invasion, migration and clone formation ability of U937 cells. Compared with the single drug group, when U937 cells were intervened by Reparixin combined with Ara-C, the malignant biological behaviors such as proliferation, invasion and colony formation were significantly decreased, and the levels of apoptosis and autophagy were significantly increased (<i>Pi><0.01). After Reparixin combined with Ara-C intervenes in U937 cells, it can up-regulate the expression of the pro-apoptotic protein Bax and significantly down-regulate the expression of the anti-apoptotic protein Bcl-2, and also hydrolyze and activate Caspase-3, thereby inducing cell apoptosis. Reparixin combined with Ara-C could up-regulate the expressions of LC3Ⅱ and Beclin-1 proteins in U937 cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (<i>Pi><0.01). MDC result showed that the green granules of vesicles increased significantly, and a large number of broken cells were seen (<i>Pi><0.01). Reparixin combined with Ara-C can significantly inhibit the phosphorylation level of PI3K, AKT and NF-κB signaling molecule, inhibit the malignant biological behavior of cells by inhibiting the activation of PI3K/AKT/NF-κB pathway, and induce programmed cell death. Ara-C intervention in U937 cells had no effect on the expression of CXCR family (<i>Pi>>0.05). The expression of <i>CXCRi>1, <i>CXCRi>2, and <i>CXCRi>4 mRNA could be down-regulated by Reparixin single-agent intervention in U937 cells (<i>Pi><0.05), and the expression of <i>CXCRi>2 was more significantly down-regulated than the control group and other CXCRs (<i>Pi><0.01). When Reparixin and Ara-C intervened in combination, the down-regulated levels of <i>CXCRi>1 and <i>CXCRi>2 were more significant than those in the single-drug group (<i>Pi><0.01), while the relative expressions of <i>CXCRi>4 and <i>CXCRi>7 mRNA had no significant difference compared with the single-drug group (<i>Pi>>0.05).
CONCLUSION
Reparixin combined with Ara-C can synergistically inhibit the malignant biological behaviors of U937 cells such as proliferation, invasion, migration and clone formation, and induce autophagy and apoptosis. The mechanism may be related to affecting the proteins expression of Bcl-2 family and down-regulating the proteins expression of CXCR family, while inhibiting the PI3K/AKT/NF-κB signaling pathway.
Humans
;
U937 Cells
;
Cytarabine/therapeutic use*
;
Receptors, Interleukin-8A
;
NF-kappa B
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinases
;
Leukemia, Myeloid, Acute/genetics*
;
Apoptosis
;
Cell Proliferation
;
Apoptosis Regulatory Proteins
;
Proto-Oncogene Proteins c-bcl-2
;
RNA, Messenger
;
Cell Line, Tumor
3.Short-chain fatty acids ameliorate spinal cord injury recovery by regulating the balance of regulatory T cells and effector IL-17+ γδ T cells.
Pan LIU ; Mingfu LIU ; Deshuang XI ; Yiguang BAI ; Ruixin MA ; Yaomin MO ; Gaofeng ZENG ; Shaohui ZONG
Journal of Zhejiang University. Science. B 2023;24(4):312-325
Spinal cord injury (SCI) causes motor, sensory, and autonomic dysfunctions. The gut microbiome has an important role in SCI, while short-chain fatty acids (SCFAs) are one of the main bioactive mediators of microbiota. In the present study, we explored the effects of oral administration of exogenous SCFAs on the recovery of locomotor function and tissue repair in SCI. Allen's method was utilized to establish an SCI model in Sprague-Dawley (SD) rats. The animals received water containing a mixture of 150 mmol/L SCFAs after SCI. After 21 d of treatment, the Basso, Beattie, and Bresnahan (BBB) score increased, the regularity index improved, and the base of support (BOS) value declined. Spinal cord tissue inflammatory infiltration was alleviated, the spinal cord necrosis cavity was reduced, and the numbers of motor neurons and Nissl bodies were elevated. Enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (qPCR), and immunohistochemistry assay revealed that the expression of interleukin (IL)-10 increased and that of IL-17 decreased in the spinal cord. SCFAs promoted gut homeostasis, induced intestinal T cells to shift toward an anti-inflammatory phenotype, and promoted regulatory T (Treg) cells to secrete IL-10, affecting Treg cells and IL-17+ γδ T cells in the spinal cord. Furthermore, we observed that Treg cells migrated from the gut to the spinal cord region after SCI. The above findings confirm that SCFAs can regulate Treg cells in the gut and affect the balance of Treg and IL-17+ γδ T cells in the spinal cord, which inhibits the inflammatory response and promotes the motor function in SCI rats. Our findings suggest that there is a relationship among gut, spinal cord, and immune cells, and the "gut-spinal cord-immune" axis may be one of the mechanisms regulating neural repair after SCI.
Animals
;
Rats
;
Interleukin-17
;
Rats, Sprague-Dawley
;
Recovery of Function
;
Spinal Cord Injuries/drug therapy*
;
T-Lymphocytes, Regulatory
;
Receptors, Antigen, T-Cell, gamma-delta/immunology*
4.Study on construction of c-Met specific CAR-T cells and its killing effect on non-small cell lung carcinoma.
Jing Ting MIN ; Lu ZHANG ; Chi Rong LONG ; Hong Lian FAN ; Zheng hong LI
Chinese Journal of Oncology 2023;45(4):322-329
Objective: To produce chimeric antigen receptor T cells (CAR-T) targeting human hepatocyte growth factor/c-Met (HGF/c-Met) protein and detect its cytotoxicity against non-small cell lung cancer (NSCLC) cells H1975 <i>in vitroi>. Methods: The whole gene sequence of c-Met CAR containing c-Met single-chain fragment variable was synthesized and linked to lentiviral vector plasmid, plasmid electrophoresis was used to detect the correctness of target gene. HEK293 cells were transfected with plasmid and the concentrated solution of the virus particles was collected. c-Met CAR lentivirus was transfected into T cells to obtain second-generation c-Met CAR-T and the expression of CAR sequences was verified by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot, and the positive rate and cell subtypes of c-Met CAR-T cells were detected by flow cytometry. The positive expression of c-Met protein in NSCLC cell line H1975 was verified by flow cytometry, and the negative expression of c-Met protein in ovarian cancer cell line A2780 was selected as the control. The cytotoxicity of c-Met CAR-T to H1975 was detected by lactate dehydrogenase (LDH) cytotoxicity assay at 1∶1, 5∶1, 10∶1 and 20∶1 of effector: target cell ratio (E∶T). Enzyme-linked immunosorbent assay (ELISA) was used to detect the release of cytokines such as TNF-α, IL-2 and IFN-γ from c-Met CAR-T co-cultured with H1975. Results: The size of band was consistent with that of designed c-Met CAR, suggesting that the c-Met CAR plasmid was successfully constructed. The results of gene sequencing were consistent with the original design sequence and lentivirus was successfully constructed. CAR molecules expression in T cells infected with lentivirus was detected by western blot and RT-qPCR, which showed c-Met CAR-T were successfully constructed. Flow cytometry results showed that the infection efficiency of c-Met CAR in T cells was over 38.4%, and the proportion of CD8(+) T cells was increased after lentivirus infection. The NSCLC cell line H1975 highly expressed c-Met while ovarian cancer cell line A2780 negatively expressed c-Met. LDH cytotoxicity assay indicated that the killing efficiency was positively correlated with the E∶T, and higher than that of control group, and the killing rate reached 51.12% when the E∶T was 20∶1. ELISA results showed that c-Met CAR-T cells released more IL-2, TNF-α and IFN-γ in target cell stimulation, but there was no statistical difference between c-Met CAR-T and T cells in the non-target group. Conclusions: Human NSCLC cell H1975 expresses high level of c-Met which can be used as a target for immunotherapy. CAR-T cells targeting c-Met have been successfully produced and have high killing effect on c-Met positive NSCLC cells <i>in vitroi>.
Humans
;
Female
;
Receptors, Chimeric Antigen/genetics*
;
Carcinoma, Non-Small-Cell Lung
;
CD8-Positive T-Lymphocytes
;
Interleukin-2/pharmacology*
;
Tumor Necrosis Factor-alpha
;
Cell Line, Tumor
;
HEK293 Cells
;
Lung Neoplasms
;
Ovarian Neoplasms
;
Immunotherapy, Adoptive
5.Pachymic acid protects against Crohn's disease-like intestinal barrier injury and colitis in miceby suppressingintestinal epithelial cell apoptosis <i>viai> inhibiting PI3K/AKT signaling.
Rongrong SHAO ; Zi YANG ; Wenjing ZHANG ; Nuo ZHANG ; Yajing ZHAO ; Xiaofeng ZHANG ; Lugen ZUO ; Sitang GE
Journal of Southern Medical University 2023;43(6):935-942
OBJECTIVE:
To investigate the effect of pachymic acid (PA) against TNBS-induced Crohn's disease (CD)-like colitis in mice and explore the possible mechanism.
METHODS:
Twenty-four C57BL/6J mice were randomized equally into control group, TNBS-induced colitis model group and PA treatment group. PA treatment was administered via intraperitoneal injection at the daily dose of 5 mg/kg for 7 days, and the mice in the control and model groups were treated with saline. After the treatments, the mice were euthanized for examination of the disease activity index (DAI) of colitis, body weight changes, colon length, intestinal inflammation, intestinal barrier function and apoptosis of intestinal epithelial cells, and the expressions of TNF-α, IL-6 and IL-1β in the colonic mucosa were detected using ELISA. The possible treatment targets of PA in CD were predicted by network pharmacology. String platform and Cytoscape 3.7.2 software were used to construct the protein-protein interaction (PPI) network. David database was used to analyze the GO function and KEGG pathway; The phosphorylation of PI3K/AKT in the colonic mucosal was detected with Western blotting.
RESULTS:
PA significantly alleviated colitis in TNBS-treated mice as shown by improvements in the DAI, body weight loss, colon length, and histological inflammation score and lowered levels of TNF-α, IL-6 and IL-1β. PA treatment also significantly improved FITC-dextran permeability, serum I-FABP level and colonic transepithelial electrical resistance, and inhibited apoptosis of the intestinal epithelial cells in TNBS-treated mice. A total of 248 intersection targets were identified between PA and CD, and the core targets included EGFR, HRAS, SRC, MMP9, STAT3, AKT1, CASP3, ALB, HSP90AA1 and HIF1A. GO and KEGG analysis showed that PA negatively regulated apoptosis in close relation with PI3K/AKT signaling. Molecular docking showed that PA had a strong binding ability with AKT1, ALB, EGFR, HSP90AA1, SRC and STAT3. In TNBS-treated mice, PA significantly decreased p-PI3K and p-AKT expressions in the colonic mucosa.
CONCLUSION
PA ameliorates TNBS-induced intestinal barrier injury in mice by antagonizing apoptosis of intestinal epithelial cells possibly by inhibiting PI3K/AKT signaling.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Crohn Disease
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Interleukin-6
;
Molecular Docking Simulation
;
Tumor Necrosis Factor-alpha
;
Colitis/chemically induced*
;
Inflammation
;
Apoptosis
;
ErbB Receptors
6.Efficacy and safety of fourth-generation CD19 CAR-T expressing IL7 and CCL19 along with PD-1 monoclonal antibody for relapsed or refractory large B-cell lymphoma.
Teng YU ; Hui LIU ; Wen LEI ; Pan Pan CHEN ; Ai Qi ZHAO ; Xiang Gui YUAN ; Ji Min GAO ; Wen Bin QIAN
Chinese Journal of Hematology 2023;44(10):820-824
Objective: This study systematically explore the efficacy and safety of fourth-generation chimeric antigen receptor T-cells (CAR-T), which express interleukin 7 (IL7) and chemokine C-C motif ligand 19 (CCL19) and target CD19, in relapsed or refractory large B-cell lymphoma. Methods: Our center applied autologous 7×19 CAR-T combined with tirelizumab to treat 11 patients with relapsed or refractory large B-cell lymphoma. The efficacy and adverse effects were explored. Results: All 11 enrolled patients completed autologous 7×19 CAR-T preparation and infusion. Nine patients completed the scheduled six sessions of tirolizumab treatment, one completed four sessions, and one completed one session. Furthermore, five cases (45.5%) achieved complete remission, and three cases (27.3%) achieved partial remission with an objective remission rate of 72.7%. Two cases were evaluated for disease progression, and one died two months after reinfusion because of uncontrollable disease. The median follow-up time was 31 (2-34) months, with a median overall survival not achieved and a median progression-free survival of 28 (1-34) months. Two patients with partial remission achieved complete remission at the 9th and 12th months of follow-up. Therefore, the best complete remission rate was 63.6%. Cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome were controllable, and no immune-related adverse reactions occurred. Conclusion: Autologous 7×19 CAR-T combined with tirelizumab for treating relapsed or refractory large B-cell lymphoma achieved good efficacy with controllable adverse reactions.
Humans
;
Antibodies, Monoclonal/therapeutic use*
;
Antigens, CD19
;
Chemokine CCL19
;
Immunotherapy, Adoptive
;
Interleukin-7
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Programmed Cell Death 1 Receptor
;
Receptors, Chimeric Antigen
7.Effect of naringenin on the anti-inflammatory, vascularization, and osteogenesis differentiation of human periodontal ligament stem cells via the stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 signaling axis stimulated by lipopolysaccharide.
Shenghong LI ; Shiyuan PENG ; Xiaoling LUO ; Yipei WANG ; Xiaomei XU
West China Journal of Stomatology 2023;41(2):175-184
OBJECTIVES:
This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism.
METHODS:
Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6.
RESULTS:
We observed that 10 μmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 μg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 μmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor).
CONCLUSIONS
Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.
Humans
;
Anti-Inflammatory Agents/pharmacology*
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12
;
Lipopolysaccharides/pharmacology*
;
Osteogenesis
;
Periodontal Ligament/metabolism*
;
Receptors, Chemokine/metabolism*
;
Stem Cells
;
Interleukin-8/metabolism*
8.Angiotensin converting enzyme 2 alleviates infectious bronchitis virus-induced cellular inflammation by suppressing IL-6/JAK2/STAT3 signaling pathway.
Xiaoxia JI ; Huanhuan WANG ; Chang MA ; Zhiqiang LI ; Xinyu DU ; Yuanshu ZHANG
Chinese Journal of Biotechnology 2023;39(7):2669-2683
The goal of this study was to investigate the regulatory effect of angiotensin converting enzyme 2 (ACE2) on cellular inflammation caused by avian infectious bronchitis virus (IBV) and the underlying mechanism of such effect. Vero and DF-1 cells were used as test target to be exposed to recombinant IBV virus (IBV-3ab-Luc). Four different groups were tested: the control group, the infection group[IBV-3ab-Luc, MOI (multiplicity of infection)=1], the ACE2 overexpression group[IBV-3ab Luc+pcDNA3.1(+)-ACE2], and the ACE2-depleted group (IBV-3ab-Luc+siRNA-ACE2). After the cells in the infection group started to show cytopathic indicators, the overall protein and RNA in cell of each group were extracted. real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the mRNA expression level of the IBV nucleoprotein (IBV-N), glycoprotein 130 (gp130) and cellular interleukin-6 (IL-6). Enzyme linked immunosorbent assay (ELISA) was used to determine the level of IL-6 in cell supernatant. Western blotting was performed to determine the level of ACE2 phosphorylation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). We found that ACE2 was successfully overexpressed and depleted in both Vero and DF-1 cells. Secondly, cytopathic indicators were observed in infected Vero cells including rounding, detaching, clumping, and formation of syncytia. These indicators were alleviated in ACE2 overexpression group but exacerbated when ACE2 was depleted. Thirdly, in the infection group, capering with the control group, the expression level of IBV-N, gp130, IL-6 mRNA and increased significantly (<i>Pi> < 0.05), the IL-6 level was significant or extremely significant elevated in cell supernatant (<i>Pi> < 0.05 or <i>Pi> < 0.01); the expression of ACE2 decreased significantly (<i>Pi> < 0.05); protein phosphorylation level of JAK2 and STAT3 increased significantly (<i>Pi> < 0.05). Fourthly, comparing with the infected group, the level of IBV-N mRNA expression in the ACE2 overexpression group had no notable change (<i>Pi> > 0.05), but the expression of gp130 mRNA, IL-6 level and expression of mRNA were elevated (<i>Pi> < 0.05) and the protein phosphorylation level of JAK2 and STAT3 decreased significantly (<i>Pi> < 0.05). In the ACE2-depleted group, there was no notable change in IBV-N (<i>Pi> > 0.05), but the IL-6 level and expression of mRNA increased significantly (<i>Pi> < 0.05) and the phosphorylation level of JAK2 and STAT3 protein decreased slightly (<i>Pi> > 0.05). The results demonstrated for the first time that ACE2 did not affect the replication of IBV in DF-1 cell, but it did contribute to the prevention of the activation of the IL-6/JAK2/STAT3 signaling pathway, resulting in an alleviation of IBV-induced cellular inflammation in Vero and DF-1 cells.
Animals
;
Chlorocebus aethiops
;
Humans
;
Interleukin-6/genetics*
;
Janus Kinase 2/pharmacology*
;
Infectious bronchitis virus/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Angiotensin-Converting Enzyme 2/pharmacology*
;
Cytokine Receptor gp130/metabolism*
;
Vero Cells
;
Signal Transduction
;
Inflammation
;
RNA, Messenger
9.Construction of NKG2D CAR-NK92 cells and its killing effect on multiple myeloma cells.
Jing LONG ; Rong ZHENG ; Sishi YE ; Shanwen KE ; Deming DUAN ; Cheng WEI ; Jimin GAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):577-585
Objective This study aims to construct and identify the chimeric antigen receptor NK92 (CAR-NK92) cells targeting NKG2D ligand (NKG2DL) (secreting IL-15Ra-IL-15) and verify the killing activity of NKG2D CAR-NK92 cells against multiple myeloma cells. Methods The extracellular segment of NKG2D was employed to connect 4-1BB and CD3Z, as well as IL-15Ra-IL-15 sequence to obtain a CAR expression framework. The lentivirus was packaged and transduced into NK92 cells to obtain NKG2D CAR-NK92 cells. The proliferation of NKG2D CAR-NK92 cells was detected by CCK-8 assay, IL-15Ra secretion was detected by ELISA and killing efficiency was detected by lactate dehydrogenase (LDH) assay. The molecular markers of NKp30, NKp44, NKp46, the ratio of apoptotic cell population, CD107a, and the secretion level of granzyme B and perforin were detected using flow cytometry. In addition, the cytotoxic mechanism of NKG2D CAR-NK92 cells on the tumor was verified by measuring the degranulation ability. Moreover, after NKG2D antibody inhibited effector cells and histamine inhibited tumor cells, LDH assay was utilized to detect the effect on cell-killing efficiency. Finally, the multiple myeloma tumor xenograft model was constructed to verify its anti-tumor activity in vivo. Results Lentiviral transduction significantly increased NKG2D expression in NK92 cells. Compared with NK92 cells, the proliferation ability of NKG2D CAR-NK92 cells was weaker. The early apoptotic cell population of NKG2D CAR-NK92 cells was less, and NKG2D CAR-NK92 cells had stronger cytotoxicity to multiple myeloma cells. Additionally, IL-15Ra secretion could be detected in its culture supernatant. NKp44 protein expression in NKG2D CAR-NK92 cells was clearly increased, demonstrating an enhanced activation level. Inhibition test revealed that the cytotoxicity of CAR-NK92 cells to MHC-I chain-related protein A (MICA) and MICB-positive tumor cells was more dependent on the interaction between NKG2D CAR and NKG2DL. After stimulating NKG2D CAR-NK92 cells with tumor cells, granzyme B and perforin expression increased, and NK cells obviously upregulated CD107α. Furthermore, multiple myeloma tumor xenograft model revealed that the tumors of mice treated with NKG2D CAR-NK92 cells were significantly reduced, and the cell therapy did not sensibly affect the weight of the mice. Conclusion A type of CAR-NK92 cell targeting NKG2DL (secreting IL-15Ra-IL-15) is successfully constructed, indicating the effective killing of multiple myeloid cells.
Humans
;
Mice
;
Animals
;
Receptors, Chimeric Antigen/genetics*
;
Interleukin-15
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
;
Granzymes
;
Cell Line, Tumor
;
Multiple Myeloma/therapy*
;
Perforin
10.Construction and functional analysis of EGFRvIII CAR-T cells co-expressing IL-15 and CCL19.
Wanqiong CHEN ; Na XIAN ; Shaomei LIN ; Wanting LIAO ; Mingzhu CHEN
Chinese Journal of Biotechnology 2023;39(9):3787-3799
The aim of this study was to investigate the functional characteristics and <i>in vitroi> specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, <i>in vitroi> specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability <i>in vitroi> (all <i>Pi> < 0.05), while there was no significant difference in killing ability <i>in vitroi>. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.
Humans
;
Receptors, Chimeric Antigen/metabolism*
;
Glioblastoma/metabolism*
;
Interleukin-15/metabolism*
;
Chemokine CCL19/metabolism*
;
Cell Line, Tumor
;
T-Lymphocytes/metabolism*

Result Analysis
Print
Save
E-mail