2.Facilitation of spinal α-motoneuron excitability by histamine and the underlying ionic mechanisms.
Guan-Yi WU ; Qian-Xing ZHUANG ; Xiao-Yang ZHANG ; Hong-Zhao LI ; Jian-Jun WANG ; Jing-Ning ZHU
Acta Physiologica Sinica 2019;71(6):809-823
Spinal α-motoneurons directly innervate skeletal muscles and function as the final common path for movement and behavior. The processes that determine the excitability of motoneurons are critical for the execution of motor behavior. In fact, it has been noted that spinal motoneurons receive various neuromodulatory inputs, especially monoaminergic one. However, the roles of histamine and hypothalamic histaminergic innervation on spinal motoneurons and the underlying ionic mechanisms are still largely unknown. In the present study, by using the method of intracellular recording on rat spinal slices, we found that activation of either H or H receptor potentiated repetitive firing behavior and increased the excitability of spinal α-motoneurons. Both of blockage of K channels and activation of Na-Ca exchangers were involved in the H receptor-mediated excitation on spinal motoneurons, whereas the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were responsible for the H receptor-mediated excitation. The results suggest that, through switching functional status of ion channels and exchangers coupled to histamine receptors, histamine effectively biases the excitability of the spinal α-motoneurons. In this way, the hypothalamospinal histaminergic innervation may directly modulate final motor outputs and actively regulate spinal motor reflexes and motor execution.
Animals
;
Histamine
;
pharmacology
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
;
metabolism
;
Motor Neurons
;
drug effects
;
physiology
;
Rats
;
Receptors, Histamine H2
;
metabolism
;
Sodium-Calcium Exchanger
;
metabolism
3.Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors.
Miao-Jin JI ; Xiao-Yang ZHANG ; Xiao-Chun PENG ; Yang-Xun ZHANG ; Zi CHEN ; Lei YU ; Jian-Jun WANG ; Jing-Ning ZHU
Neuroscience Bulletin 2018;34(6):1029-1036
The ventral pallidum (VP) is a crucial component of the limbic loop of the basal ganglia and participates in the regulation of reward, motivation, and emotion. Although the VP receives afferent inputs from the central histaminergic system, little is known about the effect of histamine on the VP and the underlying receptor mechanism. Here, we showed that histamine, a hypothalamic-derived neuromodulator, directly depolarized and excited the GABAergic VP neurons which comprise a major cell type in the VP and are responsible for encoding cues of incentive salience and reward hedonics. Both postsynaptic histamine H1 and H2 receptors were found to be expressed in the GABAergic VP neurons and co-mediate the excitatory effect of histamine. These results suggested that the central histaminergic system may actively participate in VP-mediated motivational and emotional behaviors via direct modulation of the GABAergic VP neurons. Our findings also have implications for the role of histamine and the central histaminergic system in psychiatric disorders.
Action Potentials
;
drug effects
;
Animals
;
Basal Forebrain
;
cytology
;
Dimaprit
;
pharmacology
;
Dose-Response Relationship, Drug
;
Electric Stimulation
;
Female
;
GABAergic Neurons
;
drug effects
;
Histamine
;
pharmacology
;
Histamine Agonists
;
pharmacology
;
Lysine
;
analogs & derivatives
;
metabolism
;
Male
;
Patch-Clamp Techniques
;
Pyridines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Histamine H1
;
metabolism
;
Receptors, Histamine H2
;
metabolism
;
Sodium Channel Blockers
;
pharmacology
;
Tetrodotoxin
;
pharmacology
;
gamma-Aminobutyric Acid
;
metabolism
4.Mechanisms of histamine ameliorating memory impairment induced by pentylenetetrazole-kindling epilepsy in rats.
Lisan ZHANG ; Guanfeng CHEN ; Jiefang CHEN ; Xudong HE ; Xingyue HU
Journal of Zhejiang University. Medical sciences 2017;46(1):1-6
To investigate the effects of neuronal histamine on spatial memory acquisition impairment in rats with pentylenetetrazole-kindling epilepsy, and to explore its mechanisms.A subconvulsive dose of pentylenetetrazole (35 mg/kg) was intraperitoneally injected in rats every 48 h to induce chemical kindling until fully kindled. Morris water maze was used to measure the spatial memory acquisition of the rats one week after fully pentylenetetrazole-kindled, and the histamine contents in different brain areas were measured spectrofluorometrically. Different dosages of hitidine (the precursor of histamine), pyrilamine (H1 receptor antagonist), and zolantidine (H2 receptor antagonist) were intraperitoneally injected, and their effects on spatial memory acquisition of the rats were observed.Compared with control group, escape latencies were significantly prolonged on Morris water maze training day 2 and day 3 in pentylenetetrazole-kindling epilepsy rats (all<0.05); and the histamine contents in hippocampus, thalamus and hypothalamus were decreased significantly (all<0.05). Escape latencies were markedly shortened on day 3 by intraperitoneally injected with histidine 500 mg/kg, and on day 2 and day 3 by intraperitoneally injected with histidine 1000 mg/kg in pentylenetetrazole-kindling epilepsy rats (all<0.05). The protection of histidine was reversed by zolantidine (10 and 20 mg/kg), but not by pyrilamine.Neuronal histamine can improve the spatial memory acquisition impairment in rats with pentylenetetrazole-kindling epilepsy, and the activation of H2 receptors is possibly involved in the protective effects of histamine.
Animals
;
Benzothiazoles
;
pharmacology
;
Brain Chemistry
;
drug effects
;
Epilepsy
;
chemically induced
;
complications
;
Hippocampus
;
chemistry
;
Histamine H1 Antagonists
;
pharmacology
;
Histamine H2 Antagonists
;
pharmacology
;
Histidine
;
pharmacology
;
Hypothalamus
;
chemistry
;
Kindling, Neurologic
;
physiology
;
Memory Disorders
;
drug therapy
;
etiology
;
Pentylenetetrazole
;
Phenoxypropanolamines
;
pharmacology
;
Piperidines
;
pharmacology
;
Pyrilamine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Histamine H2
;
drug effects
;
physiology
;
Spatial Memory
;
drug effects
;
Spectrometry, Fluorescence
;
Thalamus
;
chemistry
5.The Modulatory Role of Spinally Located Histamine Receptors in the Regulation of the Blood Glucose Level in D-Glucose-Fed Mice.
Yun Beom SIM ; Soo Hyun PARK ; Sung Su KIM ; Chea Ha KIM ; Su Jin KIM ; Su Min LIM ; Jun Sub JUNG ; Ohk Hyun RYU ; Moon Gi CHOI ; Hong Won SUH
The Korean Journal of Physiology and Pharmacology 2014;18(1):41-46
The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (alpha-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with alpha-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, alpha-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.
Animals
;
Blood Glucose*
;
Cetirizine
;
Dimaprit
;
Down-Regulation
;
Glucose
;
Histamine*
;
Mice*
;
Mice, Inbred ICR
;
Ranitidine
;
Receptors, Histamine H2
;
Receptors, Histamine H3
;
Receptors, Histamine*
;
Spinal Cord
;
Up-Regulation
6.H2 Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO).
Sang Eok LEE ; Dae Hoon KIM ; Young Chul KIM ; Joung Ho HAN ; Woong CHOI ; Chan Hyung KIM ; Hye Won JEONG ; Seon Mee PARK ; Sei Jin YUN ; Song Yi CHOI ; Rohyun SUNG ; Young Ho KIM ; Ra Young YOO ; Park Hee SUN ; Heon KIM ; Young Jin SONG ; Wen Xie XU ; Hyo Yung YUN ; Sang Jin LEE
The Korean Journal of Physiology and Pharmacology 2014;18(5):425-430
This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, K+ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, N(G)-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the H2 receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through H2 receptor and NO/sGC pathways.
Apamin
;
Glyburide
;
Guanylate Cyclase
;
Histamine
;
Humans
;
Muscle, Smooth*
;
Nerve Block
;
NG-Nitroarginine Methyl Ester
;
Nitric Oxide*
;
Ranitidine
;
Receptors, Histamine H2
;
Relaxation*
;
Tetraethylammonium
7.Rebamipide May Be Comparable to H2 Receptor Antagonist in Healing Iatrogenic Gastric Ulcers Created by Endoscopic Mucosal Resection: A Prospective Randomized Pilot Study.
Yu Jin KIM ; Jae Hee CHEON ; Sang Kil LEE ; Jie Hyun KIM ; Yong Chan LEE
Journal of Korean Medical Science 2010;25(4):583-588
Endoscopic mucosal resection (EMR) results in the formation of iatrogenic gastric ulcers and the optimal treatments for such ulcers are still unclear. We aimed to evaluate the efficacy of rebamipide in the management of EMR-induced ulcers by comparing it with an H2 receptor antagonist. After EMR, patients were randomly assigned into either rebamipide or famotidine groups. All patients received a one-week lansoprazole 30 mg q.d. therapy followed by three-week famotidine (20 mg b.i.d.) or rebamipide (100 mg t.i.d.) therapy. Four weeks after the treatments, ulcer sizes, stages, bleeding rates, and ulcer-related symptoms were compared using endoscopy and a questionnaire. A total of 63 patients were enrolled in this study. Finally, 51 patients were analyzed, 26 in rebamipide and 25 in famotidine group. Baseline characteristics were not significantly different between the two groups. Four weeks after EMR, the two groups were comparable in terms of ulcer reduction ratio (P=0.297), and ulcer stage (P=1.000). Moreover, no difference was observed with regard to ulcer-related symptoms, drug compliance, adverse drug event rates, and bleeding rates. Our data suggest that rebamipide is not inferior to famotidine in healing iatrogenic gastric ulcers, and could be a therapeutic option in the treatment of such ulcers.
Adult
;
Aged
;
Aged, 80 and over
;
Alanine/*analogs & derivatives/therapeutic use
;
Anti-Ulcer Agents/*therapeutic use
;
Endoscopy, Gastrointestinal/*adverse effects
;
Famotidine/*therapeutic use
;
Histamine H2 Antagonists/*therapeutic use
;
Humans
;
Iatrogenic Disease
;
Male
;
Middle Aged
;
Pilot Projects
;
Prospective Studies
;
Quinolones/*therapeutic use
;
Receptors, Histamine H2/metabolism
;
Stomach Ulcer/*drug therapy/*etiology/pathology
;
Wound Healing
8.Role of histamine H(1) and H(2) receptors in the modulation of respiratory rhythmical discharge in medulla oblongata slice preparation of neonatal rats.
Ying QI ; Zhi-Bin QIAN ; Zhong-Hai WU
Acta Physiologica Sinica 2008;60(3):397-402
The present study was carried out to determine the role of histamine H(1) and H(2) receptors in the generation of basic respiratory rhythm. Neonatal (aged 0-3 d) Sprague-Dawley rats of either sex were used. The medulla oblongata slice containing the medial region of the nucleus retrofacialis (mNRF) and the hypoglossal nerve rootlets was prepared and the surgical procedure was performed in the modified Kreb's solution (MKS) with continuous carbogen (95% O(2) and 5% CO(2)), and ended in 3 min. Respiratory rhythmical discharge activity (RRDA) of the rootlets of hypoglossal nerve was recorded by suction electrode. Thirty medulla oblongata slice preparations were divided into 5 groups. In groups I, II and III, histamine (5 μmol/L), H(1) receptor specific antagonist pyrilamine (10 μmol/L) and H(2) receptor specific antagonist cimetidine (5 μmol/L) was added into the perfusion solution for 15 min separately. In group IV, after application of histamine for 15 min, additional pyrilamine was added into the perfusion for another 15 min. In group V, after application of histamine for 15 min, additional cimetidine was added into the perfusion for another 15 min. The discharges of the roots of hypoglossal nerve were recorded. Signals were amplified and band-pass filtered (100-3.3 kHz). Data were sampled (1-10 kHz) and stored in the computer via BL-420 biological signal processing system. Our results showed that histamine significantly decreased the respiratory cycle (RC) and expiratory time (TE), but changes of integral amplitude (IA) and inspiratory time (TI) were not statistically significant. Pyrilamine induced significant increases in RC and TE, but changes of TI and IA were not statistically significant. Cimetidine had no effects on RC, TE, TI and IA of RRDA. The effect of histamine on the respiratory rhythm was reversed by additional application of pyrilamine but not cimetidine. Taken together, with the results mentioned above, histamine H(1) receptors but not H(2) receptors may play an important role in the modulation of RRDA in the medulla oblongata slice preparation of neonatal rats.
Animals
;
Animals, Newborn
;
Cimetidine
;
pharmacology
;
Female
;
Histamine
;
pharmacology
;
Histamine H1 Antagonists
;
pharmacology
;
Histamine H2 Antagonists
;
pharmacology
;
Hypoglossal Nerve
;
physiology
;
In Vitro Techniques
;
Male
;
Medulla Oblongata
;
physiology
;
Pyrilamine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Histamine H1
;
physiology
;
Receptors, Histamine H2
;
physiology
;
Respiration
9.Reversing effect of histamine on neurotoxicity induced by beta-amyloid1-42.
Qiu-Li FU ; Hai-Bin DAI ; Yao SHEN ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2007;36(2):146-149
OBJECTIVETo investigate the effects of histamine on the neurotoxicity induced by beta-amyloid(1-42)(Abeta42) in rat phaeochromocytoma (PC12) cells.
METHODSThe in vitro model of Alzheimer's disease was constructed with A beta42-treated PC12 cells. Cell morphology and MTT assay were used to evaluate the cell toxicity and histamine effects. The different histamine antagonists were applied to investigate the involvement of receptor subtypes.
RESULTThe neurotoxicity was induced by A beta42 in a concentration-dependent manner, which was reversed by histamine at concentration of 10(-7), 10(-6) mol/L. The effect was reversed by H(2) antagonist zolantidine and H(3)antagonist clobenpropit, but not by H(1) antagonist diphenhydramine.
CONCLUSIONHistamine reduces neurotoxicity induced by beta-amyloid(1-42), which may be mediated by H(2) and H(3)receptors.
Alzheimer Disease ; chemically induced ; metabolism ; prevention & control ; Amyloid beta-Peptides ; toxicity ; Animals ; Benzothiazoles ; pharmacology ; Diphenhydramine ; pharmacology ; Dose-Response Relationship, Drug ; Histamine ; pharmacology ; Histamine H2 Antagonists ; pharmacology ; Histamine H3 Antagonists ; pharmacology ; Imidazoles ; pharmacology ; Neuroprotective Agents ; metabolism ; pharmacology ; PC12 Cells ; Phenoxypropanolamines ; pharmacology ; Piperidines ; pharmacology ; Rats ; Receptors, Histamine H2 ; metabolism ; Receptors, Histamine H3 ; metabolism ; Thiourea ; analogs & derivatives ; pharmacology
10.Roles of the histaminergic receptors in the locus ceruleus in stress-induced carotid baroreflex resetting in rats.
Guo-qing WANG ; Jian-xiang LI ; Chun-ling FU ; Wan-ping SUN ; Jian TONG
Chinese Journal of Applied Physiology 2007;23(2):168-172
AIMTo explore the roles of H1 and H2 receptors in the locus ceruleus (LC) in the carotid baroreflex (CBR) resetting resulted from foot-shock stress.
METHODSMale SD rats were divided into two groups (n=18) at random: unstressed and stressed group. The latter were subjected to unavoidable electric foot-shock twice daily for a week and each session of foot-shock lasted 2 hours. The left and right carotid sinus regions were isolated from the systemic circulation in all animals anesthetized with pentobarbital sodium. The intracarotid sinus pressure (ISP) was altered in a stepwise manner in vivo. ISP-mean arterial pressure (MAP), ISP-Gain relationship curves and reflex characteristic parameters were constructed by fitting to the logistic function with five parameters. The changes in CBR performance induced by stress and the effects of microinjection with histaminergic receptors antagonists into the LC on the responses of CBR to stress were examined.
RESULTSStress significantly shifted the ISP-MAP relationship curve upwards (P < 0.05) and obviously moved the middle part of ISP-Gain relationship curve downwards (P < 0.05), and decreased the value of the MAP range and maximum gain (P < 0.05), but increased the threshold pressure, saturation pressure, set point and ISP at maximum gain (P < 0.05). Microinjection of selective H1 or H2 receptor antagonist, chlorpheniramine (CHL, 0.5 microg/microl) or cimetidine (CIM, 1.5 microg/microl) into the LC, significantly attenuated the above-mentioned changes in CBR performance induced by stress and the alleviate effect of CIM was less remarkable than that of CHL (P < 0.05). The responses of CBR under stress to H1 or H2 receptor antagonist generally occurred 20 min after the administration and lasted approximately for 16 min. Microinjection with the same dose of CHL or CIM into the LC in the unstressed group did not change CBR performance significantly (P > 0.05). However, microinjection of CHL or CIM into the LC could not completely abolish the stress-induced changes in CBR.
CONCLUSIONThe stress results in a resetting of CBR and a decrease in reflex sensitivity. The stress-induced changes in CBR may be mediated, at least in part, by activating the brain histaminergic system. The H1 and H2 receptors in the LC, especially, Hi receptors may play an important role in the resetting of CBR under stress. The descending histaminergic pathway from the hypothalamus to LC may be involved in these effects. Moreover, the effects of stress on CBR also have other mechanisms.
Animals ; Baroreflex ; Carotid Sinus ; physiology ; Locus Coeruleus ; physiology ; Male ; Rats ; Rats, Sprague-Dawley ; Receptors, Histamine H1 ; physiology ; Receptors, Histamine H2 ; physiology ; Stress, Physiological

Result Analysis
Print
Save
E-mail