1.Advances in inhibitory ion channel glycine receptors.
Xu-Ke PANG ; Si CHEN ; Xiang-Xian MA ; Yi-Nuo XU ; Wei-Jie BAI ; Chong-Lei FU ; Gui-Chang ZOU
Acta Physiologica Sinica 2024;76(6):908-916
Glycine receptors (GlyRs) belong to the ligand-gated ion channel receptor superfamily and are widely distributed throughout the central nervous system. GlyRs are essential for maintaining visual, auditory, sensory and motor functions, and abnormalities in its structure and function can lead to various neurological disorders. This review aims to provide an extensive analysis of the structure, function and regulatory mechanisms of GlyRs, and evaluate its role in various central nervous system diseases. Ultimately, this review will provide theoretical support for the development of novel drugs specifically targeting GlyRs.
Receptors, Glycine/physiology*
;
Humans
;
Animals
;
Central Nervous System Diseases/metabolism*
2.Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury.
Yiqian SHI ; Yangyang CHEN ; Yun WANG
Neuroscience Bulletin 2019;35(2):301-314
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Animals
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Glycine
;
metabolism
;
Hyperalgesia
;
drug therapy
;
etiology
;
metabolism
;
Imidazoles
;
pharmacology
;
Inhibitory Postsynaptic Potentials
;
drug effects
;
physiology
;
Male
;
Mice, Inbred C57BL
;
Neurons
;
drug effects
;
metabolism
;
Neurotransmitter Agents
;
pharmacology
;
Peripheral Nerve Injuries
;
drug therapy
;
metabolism
;
Phenanthrolines
;
pharmacology
;
Potassium Channels, Inwardly Rectifying
;
antagonists & inhibitors
;
metabolism
;
Receptors, GABA-A
;
metabolism
;
Receptors, Glycine
;
metabolism
;
Strychnine
;
pharmacology
;
Synaptic Transmission
;
drug effects
;
physiology
;
Tissue Culture Techniques
;
Touch
3.Metabotropic glutamate receptor 8 activation promotes the apoptosis of lung carcinoma A549 cells in vitro.
Tian-Jiao LI ; Yan-Hong HUANG ; Xi CHEN ; Zhou ZHOU ; Si-Wei LUO ; Dan-Dan FENG ; Jian-Zhong HAN ; Zi-Qiang LUO
Acta Physiologica Sinica 2015;67(5):513-520
This study aims to detect the expression of metabotropic glutamate receptors (mGluRs) in lung carcinoma A549 cells, and to investigate the effects of mGluR8 and mGluR4 activation on the growth of A549 cells in vitro. The mRNA expression levels of the 8 subtypes of mGluRs in A549 cells were determined by real-time PCR. Immunohistochemistry was used to analyze the protein expression of mGluR4 and mGluR8 in A549 cells and lung tissue sections obtained from lung adenocarcinoma patients. To observe the effects of mGluR8 and mGluR4 activation on the growth of A549 cells, the cultured cells were treated with (S)-3,4-DCPG (an agonist of mGluR8) and VU0155041 (an agonist of mGluR4), respectively, and then the cell viability was analyzed by CCK-8 kit, the percentage of DNA synthesis was detected by EdU incorporation, and the apoptosis of the cells was measured by hoechst 33258 staining and flow cytometry. The results showed that there were low expressions of mGluR1, mGluR5, mGluR6, mGluR7 mRNA, no expression of mGluR2 and mGluR3 mRNA, and high expressions of mGluR8 and mGluR4 mRNA in A549 cells. Accordingly, there were also mGluR4 and mGluR8 protein expressions in the A549 cells and the lung adenocarcinoma tissue sections. VU0155041 had no effect on the growth of A549 cells, but (S)-3,4-DCPG significantly decreased the cells' growth in a dose-dependent manner and increased the apoptosis of the cells. The results revealed a role of mGluR8 in the growth and apoptosis of A549 cells and suggested a potential target for clinical treatment of lung cancer.
Anilides
;
pharmacology
;
Apoptosis
;
Benzoates
;
pharmacology
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Cyclohexanecarboxylic Acids
;
pharmacology
;
Glycine
;
analogs & derivatives
;
pharmacology
;
Humans
;
Lung Neoplasms
;
pathology
;
Receptors, Metabotropic Glutamate
;
physiology
4.Ventrolateral periaqueductal gray metabotropic glutamate receptor subtypes 7 and 8 mediate opposite effects on cardiosomatic motor reflex in rats.
Na SUN ; Lingheng KONG ; Ligang NIU ; Juanxia ZHU ; Yan XU ; Jianqing DU
Journal of Southern Medical University 2014;34(1):8-13
OBJECTIVETo investigate the role of ventrolateral periaqueductal gray (VL-PAG) metabotropic glutamate receptors subtype 7 and 8 (mGluR 7/8) in descending modulation of cardiosomatic motor reflex (CMR) in rats.
METHODSAMN082 (agonist of mGluR 7) and DCPG (agonist of mGluR 8) were injected into the VL-PAG of a rat model of CMR to observe their effects in modulating CMR. The raphe magnus nucleus (NRM) or the gigantocellular reticular nucleus (Gi) was then damaged, and the changes in VL-PAG descending modulation were observed.
RESULTSSelective activation of mGluR 7 of the VL-PAG by AMN082 obviously facilitated capsaicin (CAP)-induced CMR (P<0.05), which was suppressed by DCPG-induced mGluR 8 activation (P<0.05). These facilitatory or inhibitory effects were completely reversed by group III mGluR antagonist MSOP. Damaging the NRM of VL-PAG main relay nucleus did not significantly affect the facilitatory effect produced by AMN082 microinjection (P>0.05), but partially attenuated the inhibitory effect of DCPG microinjection (P<0.05). Both the facilitatory effect of AMN082 and the inhibitory effect of DCPG were reduced obviously after bilateral Gi damage (P<0.05).
CONCLUSIONVL-PAG mGluR 7 and mGluR 8 mediate biphasic regulation of CMR in rats probably through activation of different sub-nuclei and different neurons in the rostroventral medulla.
Animals ; Benzhydryl Compounds ; pharmacology ; Benzoates ; pharmacology ; Glycine ; analogs & derivatives ; pharmacology ; Male ; Medulla Oblongata ; metabolism ; Periaqueductal Gray ; metabolism ; Physical Conditioning, Animal ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate ; agonists ; metabolism ; Reflex ; physiology
5.Different glutamate receptor mechanisms in long-term depression induced by different stimulus patterns in the CA1 area of adult rat hippocampus.
Li CHEN ; Tai-Zhen HAN ; Ma-Li JIANG
Acta Physiologica Sinica 2008;60(2):270-274
Previous reports suggested that a novel stimulus pattern of multi-train stimulus at low-frequency (2-Hz or 5-Hz) could induce stable long-term depression (LTD) in the CA1 area of adult rat hippocampus. In the present study, in order to determine the mechanism in LTD induced by the two novel tetanus patterns, changes in the population spikes (PS) in the hippocampal CA1 area of adult rats following the multi-train stimulus in the presence of AP5 [antagonist of N-methyl-D-aspartate receptors (NMDARs)] or MCPG [antagonist of type I/II metabotropic glutamate receptors (mGluRs)] were recorded. The results showed that both AP5 and MCPG inhibited the LTD induced by 2-Hz multi-train stimulus. The mean amplitude of population spikes (PSA) normalized to the baseline was (96.0±3.5)% after applying AP5 (n=10) and (95.7±4.1)% after applying MCPG (n=8), respectively, measured at 20 min post-tetanus. While 5-Hz multi-train tetanus failed to induce LTD in the presence of MCPG. The mean PSA was (73.6±4.4)% (n=10) and (98.2±8.9)% (n=8) in the presence of AP5 and MCPG, respectively, measured at 35 min post-tetanus. So it is suggested that LTD induced by 2-Hz multi-train tetanus involves co-activation of NMDARs and mGluRs, while LTD induced by 5-Hz multi-train tetanus is only related to activation of mGluRs.
2-Amino-5-phosphonovalerate
;
pharmacology
;
Animals
;
CA1 Region, Hippocampal
;
physiology
;
Glycine
;
analogs & derivatives
;
pharmacology
;
Long-Term Synaptic Depression
;
Rats
;
Receptors, Metabotropic Glutamate
;
antagonists & inhibitors
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
6.Glycine receptors contribute to cytoprotection of glycine in myocardial cells.
Ren-bin QI ; Jun-yan ZHANG ; Da-xiang LU ; Hua-dong WANG ; Hai-hua WANG ; Chu-Jie LI
Chinese Medical Journal 2007;120(10):915-921
BACKGROUNDThe classic glycine receptor (GlyR) in the central nervous system is a ligand-gated membrane-spanning ion channel. Recent studies have provided evidence for the existence of GlyR in endothelial cells, renal proximal tubular cells and most leukocytes. In contrast, no evidence for GlyR in myocardial cells has been found so far. Our recent researches have showed that glycine could protect myocardial cells from the damage induced by lipopolysaccharide (LPS). Further studies suggest that myocardial cells could contain GlyR or binding site of glycine.
METHODSIn isolated rat heart damaged by LPS, the myocardial monophasic action potential (MAP), the heart rate (HR), the myocardial tension and the activities of lactate dehydrogenase (LDH) from the coronary effluent were determined. The concentration of intracellular free calcium ([Ca(2+)](i)) was measured in cardiomyocytes injured by LPS and by hypoxia/reoxygenation (H/R), which excludes the possibility that reduced calcium influx because of LPS neutralized by glycine. Immunohistochemistry was used to detect the GlyR in myocardial tissue. GlyR and its subunit in the purified cultured cardiomyocytes were identified by Western blotting.
RESULTSAlthough significant improvement in the MAP/MAPD(20), HR, and reduction in LDH release were observed in glycine + LPS hearts, myocardial tension did not recover. Further studies demonstrated that glycine could prevent rat mycordial cells from LPS and hypoxia/reoxygenation injury (no endotoxin) by attenuating calcium influx. Immunohistochemistry exhibited a positive green-fluorescence signaling along the cardiac muscle fibers. Western blotting shows that the purified cultured cardiomyocytes express GlyR beta subunit, but GlyR alpha1 subunit could not be detected.
CONCLUSIONSThe results suggest that glycine receptor is expressed in cardiomyocytes and participates in cytoprotection from LPS and hypoxia/reoxygenation injury. Glycine could directly activate GlyR on the cardiomyocytes and prevent calcium influx into the cardiomyocytes.
Animals ; Blood Pressure ; drug effects ; Blotting, Western ; Calcium ; metabolism ; Cytoprotection ; Glycine ; pharmacology ; Heart ; drug effects ; physiology ; Heart Rate ; drug effects ; Immunohistochemistry ; L-Lactate Dehydrogenase ; secretion ; Lipopolysaccharides ; toxicity ; Male ; Rats ; Rats, Sprague-Dawley ; Receptors, Glycine ; analysis ; physiology

Result Analysis
Print
Save
E-mail