1.Effects of electroacupuncture pretreatment on GABAA receptor of fastigial nucleus and sympathetic nerve activity in rats with myocardial ischemia reperfusion injury.
Shuai-Ya WANG ; Qi SHU ; Pian-Pian CHEN ; Fan ZHANG ; Xiang ZHOU ; Qian-Yi WANG ; Jie ZHOU ; Xia WEI ; Ling HU ; Qing YU ; Rong-Lin CAI
Chinese Acupuncture & Moxibustion 2023;43(6):669-678
OBJECTIVE:
To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.
METHODS:
A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 μL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR.
RESULTS:
Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01).
CONCLUSION
EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Cerebellar Nuclei
;
Electroacupuncture
;
Myocardial Reperfusion Injury/therapy*
;
Receptors, GABA-A/genetics*
;
RNA, Messenger
2.Clinical Value of Translocator Protein Gene in Evaluating the Efficacy of FLT3-ITD/DNMT3A R882 Double-Mutated Acute Myeloid Leukemia.
Shan-Hao TANG ; Ying LU ; Pi-Sheng ZHANG ; Dong CHEN ; Xu-Hui LIU ; Xiao-Hong DU ; Jun-Jie CAO ; Shuang-Yue LI ; Ke-Ya SHA ; Lie-Guang CHEN ; Xian-Xu ZHUANG ; Pei-Pei YE ; Li LIN ; Ren-Zhi PEI
Journal of Experimental Hematology 2023;31(1):45-49
OBJECTIVE:
To observe the clinical significance of translocator proteins (TSPO) gene in the treatment of FLT3-ITD/DNMT3A R882 double-mutated acute myeloid leukemia (AML).
METHODS:
Seventy-six patients with AML hospitalized in the Department of Hematology of the Affiliated People's Hospital of Ningbo University from June 2018 to June 2020 were selected, including 34 patients with FLT3-ITD mutation, 27 patients with DNMT3A R882 mutation, 15 patients with FLT3-ITD/DNMT3A R882 double mutation, as well as 19 patients with immune thrombocytopenia (ITP) hospitalized during the same period as control group. RNA was routinely extracted from 3 ml bone marrow retained during bone puncture, and TSPO gene expression was detected by transcriptome sequencing (using 2-deltadeltaCt calculation).
RESULTS:
The expression of TSPO gene in FLT3-ITD group and DNMT3A R882 group at first diagnosis was 2.02±1.04 and 1.85±0.76, respectively, which were both higher than 1.00±0.06 in control group, but the differences were not statistically significant (P=0.671, P=0.821). The expression of TSPO gene in the FLT3-ITD/DNMT3A R882 group was 3.98±1.07, wich was significantly higher than that in the FLT3-ITD group and DNMT3A R882 group, the differences were statistically significant (P=0.032, P=0.021). The expression of TSPO gene in patients who achieved complete response after chemotherapy in the FLT3-ITD/DNMT3A R882 group was 1.19±0.87, which was significantly lower than that at first diagnosis, and the difference was statistically significant (P=0.011).
CONCLUSION
TSPO gene may be used as an indicator of efficacy in FLT3-ITD /DNMT3A R882 double-mutated AML.
Humans
;
DNA (Cytosine-5-)-Methyltransferases/genetics*
;
DNA Methyltransferase 3A
;
Mutation
;
Leukemia, Myeloid, Acute/drug therapy*
;
Nucleophosmin
;
Prognosis
;
fms-Like Tyrosine Kinase 3/genetics*
;
Receptors, GABA/therapeutic use*
3.Noradrenaline modulates the spontaneous firing activities of Purkinje cells via α2-adrenergic receptor in mouse cerebellar cortex.
Xu-Dong ZHANG ; Li-Fei WANG ; Fang-Ling XUAN ; De-Lai QIU ; Bin-Bin ZHANG ; Chun-Ping CHU
Acta Physiologica Sinica 2022;74(3):359-369
Cerebellar Purkinje cells (PCs) exhibit two types of discharge activities: simple spike (SS) and complex spike (CS). Previous studies found that noradrenaline (NA) can inhibit CS and bidirectionally regulate SS, but the enhancement of NA on SS is overwhelmed by the strong inhibition of excitatory molecular layer interneurons. However, the mechanism underlying the effect of NA on SS discharge frequency is not clear. Therefore, in the present study, we examined the mechanism underlying the increasing effect of NA on SS firing of PC in mouse cerebellar cortex in vivo and in cerebellar slice by cell-attached and whole-cell recording technique and pharmacological methods. GABAA receptor was blocked by 100 µmol/L picrotoxin in the whole process. In vivo results showed that NA significantly reduced the number of spikelets of spontaneous CS and enhanced the discharge frequency of SS, but did not affect the discharge frequency of CS. In vitro experiments showed that NA reduced the number of CS spikelets and after hyperpolarization potential (AHP) induced by electrical stimulation, and increased the discharge frequency of SS. NA also reduced the amplitude of excitatory postsynaptic current (EPSC) of parallel fiber (PF)-PC and significantly increased the paired-pulse ratio (PPR). Application of yohimbine, an antagonist of α2-adrenergic receptor (AR), completely eliminated the enhancing effect of NA on SS. The α2-AR agonist, UK14304, also increased the frequency of SS. The β-AR blocker, propranolol, did not affect the effects of NA on PC. These results suggest that in the absence of GABAA receptors, NA could attenuate the synaptic transmission of climbing fiber (CF)-PC via activating α2-AR, inhibit CS activity and reduce AHP, thus enhancing the SS discharge frequency of PC. This result suggests that NA neurons of locus coeruleus can finely regulate PC signal output by regulating CF-PC synaptic transmission.
Action Potentials/physiology*
;
Animals
;
Cerebellar Cortex/metabolism*
;
Cerebellum/metabolism*
;
Mice
;
Norepinephrine/pharmacology*
;
Purkinje Cells/metabolism*
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Receptors, GABA-A/metabolism*
4.Effect of etomidate on the reuniens neuronal activity.
Yulong WANG ; Tingting XUE ; Yongquan CHEN
Journal of Central South University(Medical Sciences) 2021;46(1):39-46
OBJECTIVES:
To explore the effect of etomidate on the neuronal activity of ventral thalamic reuniens nucleus and the underlying mechanisms.
METHODS:
Whole-cell patch clamp method was used to explore the effect of etomidate on the activity of ventral thalamic reuniens neurons in the acute brain slices obtained from 4-5 weeks old C57BL/6J mice. The electrophysiological characteristics of ventral thalamic reuniens neurons were recorded in the current clamp mode, and then the effects of etomidate (0.5, 2.0, 8.0 μmol/L etomidate groups) and intralipid (intralipid group) on the discharge frequency and membrane potential of ventral thalamic reuniens neurons were recorded. During the experiment, the ventral thalamic reuniens neuron firing rates (RNFRs) were recorded as F
RESULTS:
In the intralipid group, there was no significant difference among the F
CONCLUSIONS
Etomidate can inhibit the activity of ventral thalamic reuniens neurons in concentration-dependent manner, and which is reversible. Etomidate with sub-anesthetic concentration inhibits the activity of ventral thalamic reuniens neurons via targeting the GABA
Animals
;
Etomidate/pharmacology*
;
Mice
;
Mice, Inbred C57BL
;
Neurons
;
Patch-Clamp Techniques
;
Receptors, GABA-A
5.Na-K-2Cl symporter contributes to γ-aminobutyric acid-evoked excitation in rat enteric neurons.
Sumei LIU ; Lifei ZHENG ; Kayla NEITZEL ; Tuo JI ; Wei REN ; Mei-Hua QU
Acta Physiologica Sinica 2020;72(3):263-273
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the adult central nervous system (CNS), however, it causes excitation in the immature CNS neurons. The shift from GABA-induced depolarization to hyperpolarization in postnatal brain is primarily due to progressive decrease in the expression of the Na-K-2Cl symporter 1 (NKCC1) and increased expression of the K-Cl cotransporter 2 (KCC2). Unlike CNS neurons, both immature and mature neurons in the enteric nervous system (ENS) are depolarized by GABA. Molecular mechanisms by which GABA excites ENS neurons are unclear. It is understood, however, that the excitatory action depends on elevated intraneuronal Cl. We aimed to test a hypothesis that high intracellular Cl in ENS neurons is maintained by activity of the NKCCs. We found that NKCC2 immunoreactivity (IR) was expressed in the ENS of the rat colon on postnatal day 1 (P1). The expression level of NKCC2 continuously increased and reached a steady high level on P14 and maintained at that level in adulthood. NKCC1 IR appeared in ENS on P14 and maintained through adulthood. KCC2 IR was not detectable in the ENS in any of the developmental stages. Both NKCC1 IR and NKCC2 IR were co-expressed with GABA receptors in ENS neurons. Exogenous GABA (1 mmol/L) caused membrane depolarization in the ENS neurons. The reversal potential of GABA-induced depolarization was about -16 mV. Blockade of NKCC by bumetanide (50 μmol/L) or furosemide (300 μmol/L) suppressed the depolarizing responses to GABA. Bumetanide (50 μmol/L) shifted the reversal potential of GABA-induced depolarization in the hyperpolarizing direction. Neither the KCC blocker DIOA (20 μmol/L) nor the Cl/HCO exchanger inhibitor DIDS (200 μmol/L) suppressed GABA-evoked depolarization. The results suggest that ENS neurons continuously express NKCC2 since P1 and NKCC1 since P14, which contribute to the accumulation of Cl in ENS neurons and GABA-evoked depolarization in neonate and adult ENS neurons. These results provide the first direct evidence for the contribution of both NKCC2 and NKCC1 to the GABA-mediated depolarization.
Animals
;
Bumetanide
;
Neurons
;
Rats
;
Receptors, GABA-A
;
Symporters
;
gamma-Aminobutyric Acid
6.Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury.
Yiqian SHI ; Yangyang CHEN ; Yun WANG
Neuroscience Bulletin 2019;35(2):301-314
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Animals
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Glycine
;
metabolism
;
Hyperalgesia
;
drug therapy
;
etiology
;
metabolism
;
Imidazoles
;
pharmacology
;
Inhibitory Postsynaptic Potentials
;
drug effects
;
physiology
;
Male
;
Mice, Inbred C57BL
;
Neurons
;
drug effects
;
metabolism
;
Neurotransmitter Agents
;
pharmacology
;
Peripheral Nerve Injuries
;
drug therapy
;
metabolism
;
Phenanthrolines
;
pharmacology
;
Potassium Channels, Inwardly Rectifying
;
antagonists & inhibitors
;
metabolism
;
Receptors, GABA-A
;
metabolism
;
Receptors, Glycine
;
metabolism
;
Strychnine
;
pharmacology
;
Synaptic Transmission
;
drug effects
;
physiology
;
Tissue Culture Techniques
;
Touch
7.The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems
Faraz Mahdian DEHKORDI ; Jahangir KABOUTARI ; Morteza ZENDEHDEL ; Moosa JAVDANI
The Korean Journal of Pain 2019;32(3):160-167
BACKGROUND: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. METHODS: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. RESULTS: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. CONCLUSIONS: It seems that antinocicptive effects of artemisinin are mediated by GABAA receptors.
Acetic Acid
;
Adult
;
Analgesics
;
Analgesics, Opioid
;
Animals
;
Bicuculline
;
Ethanol
;
gamma-Aminobutyric Acid
;
Humans
;
Indomethacin
;
Inflammation
;
Male
;
Mice
;
Naloxone
;
Neuralgia
;
Receptors, GABA
8.Dexmedetomidine and propofol sedation requirements in an autistic rat model
Soha A ELMORSY ; Ghada F SOLIMAN ; Laila A RASHED ; Hamed ELGENDY
Korean Journal of Anesthesiology 2019;72(2):169-177
BACKGROUND: Autism is a challenging neurodevelopmental disorder. Previous clinical observations have suggested altered sedation requirements for children with autism. Our study aimed to test this observation experimentally in an animal model and to explore its possible mechanisms. METHODS: Eight adult pregnant female Sprague-Dawley rats were randomly divided into two groups. Four were injected with intraperitoneal sodium valproate on gestational day 12 and four were injected with normal saline. On postnatal day 28, the newborn male rats were subjected to the open-field test to confirm autistic features. Each rat was injected intraperitoneally with a single dose of propofol (50 mg/kg) or dexmedetomidine (0.2 mg/kg). The times to loss of righting reflex (LORR) and to return of righting reflex (RORR) were recorded. On the following day, all rats were re-sedated and underwent electroencephalography (EEG). Thereafter, the rats were euthanized and their hippocampal gamma-aminobutyric acid type A (GABA(A)) and glutamate N-methyl-D-aspartate (NMDA) receptor gene expressions were assessed. RESULTS: Autistic rats showed significantly longer LORR times and shorter RORR times than did the controls (median LORR times: 12.0 versus 5.0 min for dexmedetomidine and 22.0 versus 8.0 min for propofol; P < 0.05). EEG showed a low-frequency, high-amplitude wave pattern 2 min after LORR in the control rats. Autistic rats showed a high-frequency, low-amplitude awake pattern. Hippocampal GABA(A) receptor gene expression was significantly lower and NMDA gene expression was greater in autistic rats. CONCLUSIONS: This study supports the clinical observations of increased anesthetic sedative requirements in children with autism and our biochemical analyses using and glutamate receptor gene expression highlight possible underlying mechanisms.
Adult
;
Animals
;
Autistic Disorder
;
Child
;
Dexmedetomidine
;
Electroencephalography
;
Female
;
gamma-Aminobutyric Acid
;
Gene Expression
;
Glutamic Acid
;
Humans
;
Infant, Newborn
;
Male
;
Models, Animal
;
N-Methylaspartate
;
Neurodevelopmental Disorders
;
Propofol
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A
;
Receptors, Glutamate
;
Reflex, Righting
;
Valproic Acid
9.GABA Receptor Activity Suppresses the Transition from Inter-ictal to Ictal Epileptiform Discharges in Juvenile Mouse Hippocampus.
Yan-Yan CHANG ; Xin-Wei GONG ; Hai-Qing GONG ; Pei-Ji LIANG ; Pu-Ming ZHANG ; Qin-Chi LU
Neuroscience Bulletin 2018;34(6):1007-1016
Exploring the transition from inter-ictal to ictal epileptiform discharges (IDs) and how GABA receptor-mediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment. We used Mg-free artificial cerebrospinal fluid (ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg-free ACSF for 10 min-20 min, synchronous recurrent seizure-like events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges (IIDs) to pre-ictal epileptiform discharges (PIDs), and then to IDs. During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 μmol/L of the GABA receptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 μmol/L muscimol abolished all the epileptiform discharges. When the GABA receptor antagonist bicuculline was applied at 10 μmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABA receptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus.
Animals
;
Animals, Newborn
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Epilepsy
;
pathology
;
GABA-A Receptor Agonists
;
pharmacology
;
GABA-A Receptor Antagonists
;
therapeutic use
;
Hippocampus
;
drug effects
;
metabolism
;
physiopathology
;
In Vitro Techniques
;
Magnesium
;
metabolism
;
pharmacology
;
Male
;
Membrane Potentials
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Muscimol
;
pharmacology
;
Nerve Net
;
drug effects
;
Receptors, GABA-A
;
metabolism
10.Korean red ginseng excitation of paraventricular nucleus neurons via non-N-methyl-D-aspartate glutamate receptor activation in mice
Yiming SHEN ; Janardhan P BHATTARAI ; Soo Joung PARK ; Gyu Seung LEE ; Pan Dong RYU ; Seong Kyu HAN
Journal of Veterinary Science 2018;19(2):172-178
It has been reported that Korean red ginseng (KRG), a valuable and important traditional medicine, has varied effects on the central nervous system, suggesting its activities are complicated. The paraventricular nucleus (PVN) neurons of the hypothalamus has a critical role in stress responses and hormone secretions. Although the action mechanisms of KRG on various cells and systems have been reported, the direct membrane effects of KRG on PVN neurons have not been fully described. In this study, the direct membrane effects of KRG on PVN neuronal activity were investigated by using a perforated patch-clamp in ICR mice. In gramicidin perforated patch-clamp mode, KRG extract (KRGE) induced repeatable depolarization followed by hyperpolarization of PVN neurons. The KRGE-induced responses were concentration-dependent and persisted in the presence of tetrodotoxin, a voltage sensitive Na+ channel blocker. The KRGE-induced responses were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (10 µM), a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, but not by picrotoxin, a type A gamma-aminobutyric acid receptor antagonist. The results indicate that KRG activates non-NMDA glutamate receptors of PVN neurons in mice, suggesting that KRG may be a candidate for use in regulation of stress responses by controlling autonomic nervous system and hormone secretion.
6-Cyano-7-nitroquinoxaline-2,3-dione
;
Animals
;
Autonomic Nervous System
;
Central Nervous System
;
Glutamic Acid
;
Gramicidin
;
Hypothalamus
;
Medicine, Traditional
;
Membranes
;
Mice
;
Mice, Inbred ICR
;
Neurons
;
Panax
;
Paraventricular Hypothalamic Nucleus
;
Patch-Clamp Techniques
;
Picrotoxin
;
Receptors, GABA
;
Receptors, Glutamate
;
Tetrodotoxin

Result Analysis
Print
Save
E-mail