1.Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires Mas-related G protein-coupled receptor X2 activation.
Zhikai LIAO ; Yunzhu YAO ; Bingqi DONG ; Yue LE ; Longfei LUO ; Fang MIAO ; Shan JIANG ; Tiechi LEI
Chinese Medical Journal 2025;138(11):1367-1378
BACKGROUND:
Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis.
METHODS:
Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8 + T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H 2 O 2 )-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2 -/- ) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation.
RESULTS:
IFNγ-producing mast cells were closely aligned with the recruitment of CD8 + T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs . lesion, 13.00 ± 4.00/high-power fields [HPF] vs . 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs . 48 h post-recall, 0/HPF vs . 3.80 ± 1.92/HPF, P <0.05). The IFNγ + mast cell and CD8 + T cell counts were lower in the skin of MrgB2 -/- mice than in those of wild-type mice (WT vs . KO 48 h post-recall, 4.20 ± 0.84/HPF vs . 0.80 ± 0.84/HPF, P <0.05).
CONCLUSION
Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Vitiligo/metabolism*
;
Mast Cells/immunology*
;
Animals
;
Interferon-gamma/metabolism*
;
Mice
;
Humans
;
Melanocytes/metabolism*
;
Receptors, G-Protein-Coupled/genetics*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Female
;
Matrix Metalloproteinase 9/metabolism*
;
Stem Cell Factor/metabolism*
2.LGR5 interacts with HSP90AB1 to mediate enzalutamide resistance by activating the WNT/β-catenin/AR axis in prostate cancer.
Ze GAO ; Zhi XIONG ; Yiran TAO ; Qiong WANG ; Kaixuan GUO ; Kewei XU ; Hai HUANG
Chinese Medical Journal 2025;138(23):3184-3194
BACKGROUND:
Enzalutamide, a second-generation androgen receptor (AR) pathway inhibitor, is widely used in the treatment of castration-resistant prostate cancer. However, after a period of enzalutamide treatment, patients inevitably develop drug resistance. In this study, we characterized leucine-rich repeated G-protein-coupled receptor 5 (LGR5) and explored its potential therapeutic value in prostate cancer.
METHODS:
A total of 142 pairs of tumor and adjacent formalin-fixed paraf-fin-embedded tissue samples from patients with prostate cancer were collected from the Pathology Department at Sun Yat-sen Memorial Hos-pital. LGR5 was screened by sequencing data of enzalutamide-resistant cell lines combined with sequencing data of lesions with different Gleason scores from the same patients. The biological function of LGR5 and its effect on enzalutamide resistance were investigated in vitro and in vivo . Glutathione-S-transferase (GST) pull-down, coimmunoprecipitation, Western blotting, and immunofluorescence assays were used to explore the specific binding mechanism of LGR5 and related pathway changes.
RESULTS:
LGR5 was significantly upregulated in prostate cancer and negatively correlated with poor patient prognosis. Overexpression of LGR5 promoted the malignant progression of prostate cancer and reduced sensitivity to enzalutamide in vitro and in vivo . LGR5 promoted the phosphorylation of glycogen synthase kinase-3β (GSK-3β) by binding heat shock protein 90,000 alpha B1 (HSP90AB1) and mediated the activation of the Wingless/integrated (WNT)/β-catenin signaling pathway. The increased β-catenin in the cytoplasm entered the nucleus and bound to the nuclear AR, promoting the transcription level of AR, which led to the enhanced tolerance of prostate cancer to enzalutamide. Reducing HSP90AB1 binding to LGR5 significantly enhanced sensitivity to enzalutamide.
CONCLUSIONS
LGR5 directly binds to HSP90AB1 and mediates GSK-3β phosphorylation, promoting AR expression by regulating the WNT/β-catenin signaling pathway, thereby conferring resistance to enzalutamide treatment in prostate cancer.
Male
;
Humans
;
Phenylthiohydantoin/pharmacology*
;
Benzamides
;
Receptors, G-Protein-Coupled/genetics*
;
Nitriles
;
Cell Line, Tumor
;
HSP90 Heat-Shock Proteins/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Prostatic Neoplasms/drug therapy*
;
beta Catenin/metabolism*
;
Receptors, Androgen/genetics*
;
Animals
;
Mice
;
Wnt Signaling Pathway/physiology*
3.The role of microglia activated by the deletion of immune checkpoint receptor CD200R1 gene in a mouse model of Parkinson's disease.
Jia-Li GUO ; Tao-Ying HUANG ; Zhen ZHANG ; Kun NIU ; Xarbat GONGBIKAI ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2025;77(1):13-24
The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1-/- mice. The primary microglia cells of wild-type and CD200R1-/- mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis in vitro by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1-/- mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Animals
;
Microglia/physiology*
;
Mice
;
Phagocytosis
;
Parkinson Disease/genetics*
;
Disease Models, Animal
;
Receptors, Cell Surface/physiology*
;
Dopaminergic Neurons/pathology*
;
Antigens, CD/metabolism*
;
Gene Deletion
;
Substantia Nigra
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Cells, Cultured
;
Male
;
alpha-Synuclein
;
CD68 Molecule
;
Orexin Receptors
4.Research progress on the role and mechanism of endothelin-1 in pain.
Cong-Kun HU ; Hao-Jun YOU ; Jing LEI
Acta Physiologica Sinica 2025;77(1):120-130
Endothelin-1 is a peptide derived from endothelial cells, consisting of 21 amino acid residues. In recent years, research has found that endothelin-1 not only plays a key role in vascular tone regulation but also participates in the occurrence and development of various types of pathological pain, including inflammatory pain, neuropathic pain, and cancer pain. Endothelin-1 binds to its receptors and activates multiple signaling pathways such as protein kinase C, calcium ion channels, and the phosphoinositide pathway, thereby influencing neuronal excitability and nociceptive information transmission. This article briefly reviews the current understanding of the mechanisms and potential roles of endothelin-1 in the development of pain, as well as commonly used endothelin-1 receptor antagonists, aiming to provide clues for better utilizing endothelin-1 and its receptors to alleviate and treat pathological pain.
Humans
;
Endothelin-1/physiology*
;
Pain/physiopathology*
;
Signal Transduction/physiology*
;
Animals
;
Neuralgia/physiopathology*
;
Cancer Pain/physiopathology*
;
Endothelin Receptor Antagonists
5.Effect of Yuxuebi Tablets on mice with inflammatory pain based on GPR37-mediated inflammation resolution.
Ying LIU ; Guo-Xin ZHANG ; Xue-Min YAO ; Wen-Li WANG ; Ao-Qing HUANG ; Hai-Ping WANG ; Chun-Yan ZHU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(1):178-186
In order to investigate whether the effect of Yuxuebi Tablets on the peripheral and central inflammation resolution of mice with inflammatory pain is related to their regulation of G protein-coupled receptor 37(GPR37), an inflammatory pain model was established by injecting complete Freund's adjuvant(CFA) into the paws of mice, with a sham-operated group receiving a similar volume of normal saline. The mice were assigned randomly to the sham-operated group, model group, ibuprofen group(91 mg·kg~(-1)), and low-, medium-, and high-dose groups of Yuxuebi Tablets(60, 120, and 240 mg·kg~(-1)). The drug was administered orally from days 1 to 19 after modeling. Von Frey method and the hot plate test were used to detect mechanical pain thresholds and heat hyperalgesia. The levels of interleukin-10(IL-10) and transforming growth factor-beta(TGF-β) in the spinal cord were quantified using enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein expression of GPR37 in the spinal cord was measured by real-time quantitative reverse transcription PCR(qRT-PCR) and Western blot. Additionally, immunofluorescence was used to detect the expression of macrosialin antigen(CD68), mannose receptor(MRC1 or CD206), and GPR37 in dorsal root ganglia, as well as the expression of calcium-binding adapter molecule 1(IBA1), CD206, and GPR37 in the dorsal horn of the spinal cord. The results showed that compared with those of the sham-operated group, the mechanical pain thresholds and hot withdrawal latency of the model group significantly declined, and the expression of CD68 in the dorsal root ganglia and the expression of IBA1 in the dorsal horn of the spinal cord significantly increased. The expression of CD206 and GPR37 significantly decreased in the dorsal root ganglion and dorsal horn of the spinal cord, and IL-10 and TGF-β levels in the spinal cord were significantly decreased. Compared with those of the model group, the mechanical pain thresholds and hot withdrawal latency of the high-dose group of Yuxuebi Tablets significantly increased, and the expression of CD68 in the dorsal root ganglion and IBA1 in the dorsal horn of the spinal cord significantly decreased. The expression of CD206 and GPR37 in the dorsal root ganglion and dorsal horn of the spinal cord significantly increased, as well as IL-10 and TGF-β levels in the spinal cord. These findings indicated that Yuxuebi Tablets may reduce macrophage(microglial) infiltration and foster M2 macrophage polarization by enhancing GPR37 expression in the dorsal root ganglia and dorsal horn of the spinal cord of CFA-induced mice, so as to improve IL-10 and TGF-β levels, promote resolution of both peripheral and central inflammation, and play analgesic effects.
Inflammation/genetics*
;
Pain/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Mice
;
Freund's Adjuvant/pharmacology*
;
Ibuprofen
;
Pain Threshold/drug effects*
;
Hyperalgesia/genetics*
;
Ganglia, Spinal
;
Interleukin-10/genetics*
;
Transforming Growth Factor beta/genetics*
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tablets
;
Receptors, G-Protein-Coupled
6.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry
7.Berberine inhibits macrophage foam cell formation through activation of ACE2-Ang(1-7)-Mas signaling pathway.
Qin ZHANG ; Songhao HU ; Junxia YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):978-984
Objective This study aims to investigate the effect of berberine (Ber) on foam cell formation induced by oxidized low-density lipoprotein (ox-LDL) in macrophages and to explore the mechanism's association with the ACE2-Ang(1-7)-Mas axis. Methods They were randomly divided into blank group, model group (RAW264.7 cells induced with 60 μg/mL ox-LDL), and berberine group (the model treated with berberine interventions at 2.5, 5, and 10 μmol/L concentrations). Lipid accumulation within the cells was assessed by Oil Red O staining, and the content of lipid droplets in each group was quantitatively analyzed by enzymatic method. The content of total cholesterol (TC) and free cholesterol (FC) in foam cells were detected by enzymatic method. The levels of oxidative stress factors (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH)), inflammatory factors such as tumor necrosis factor α(TNF-α), and nitric oxide (NO) were measured using corresponding relevant reagent kits. The mRNA and protein expressions of ACE2 and Mas were evaluated through quantitative real-time PCR and Western blot analysis, respectively. The levels of AngII and Ang(1-7) were detected by ELISA. Results Compared with the model group, the berberine groups exhibited reduced lipid droplet accumulation and a dose-dependent decrease in intracellular lipid content. Berberine significantly lowered TC and FC levels in foam cells and reduced the CE/TC ratio. The levels of the oxidative factor MDA were significantly reduced, while the levels of the antioxidant factors SOD and GSH were markedly increased. Inflammatory factors TNF-α and NO were significantly decreased. The expression of the ACE2-Ang(1-7)-Mas signaling pathway was significantly activated, and the effect was more pronounced in the Ber group with high-concentration compared to the group with low-concentration, demonstrating a dose-dependent response. Conclusion Berberine can inhibit macrophage foam cell formation, potentially through upregulation of the ACE2-Ang(1-7)-Mas signaling pathway, thereby contributing to the alleviation of atherosclerosis.
Berberine/pharmacology*
;
Foam Cells/cytology*
;
Animals
;
Signal Transduction/drug effects*
;
Mice
;
Angiotensin-Converting Enzyme 2
;
Angiotensin I/genetics*
;
Peptidyl-Dipeptidase A/genetics*
;
Peptide Fragments/genetics*
;
Receptors, G-Protein-Coupled/genetics*
;
RAW 264.7 Cells
;
Proto-Oncogene Proteins/genetics*
;
Proto-Oncogene Mas
;
Lipoproteins, LDL/pharmacology*
;
Nitric Oxide/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
8.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
9.Construction and phenotypic analysis of p2rx2 knockout zebrafish lines.
Yong ZHANG ; Qingying SHI ; Hao XIE ; Binling XIE ; Lihua LI ; Weijing WU ; Huaping XIE ; Zi'an XIAO ; Dinghua XIE ; Ruosha LAI
Journal of Central South University(Medical Sciences) 2025;50(6):919-930
OBJECTIVES:
The purinergic receptor P2X2 (P2RX2) encodes an ATP-gated ion channel permeable to Na+, K+, and especially Ca²⁺. Loss-of-function mutations in P2RX2 are known to cause autosomal dominant nonsyndromic deafness 41 (DFNA41), which manifests as high-frequency hearing loss, accelerated presbycusis, and increased susceptibility to noise-induced damage. Zebrafish, owing to their small size, rapid development, high fecundity, transparent embryos, and high gene conservation with humans, provide an ideal model for studying human diseases and developmental mechanisms. This study aims to generate a p2rx2 knockout zebrafish model using CRISPR/Cas9 gene editing system to investigate the effect of p2rx2 deficiency on the auditory system, providing a basis for understanding P2RX2-related hearing loss and developing gene therapy strategies.
METHODS:
Two CRISPR targets (sgRNA1 and sgRNA2) spaced 47 bp apart were designed within the zebrafish p2rx2 gene. Synthesized sgRNAs and Cas9 protein were microinjected into single-cell stage Tübingen (TU)-strain zebrafish embryos. PCR and gel electrophoresis verified editing efficiency at 36 hours post-fertilization (hpf). Surviving embryos were raised to adulthood (F0), tail-clipped, genotyped, and screened for positive mosaics. F1 heterozygotes were generated by outcrossing, and F2 homozygous mutants were obtained by intercrossing. Polymerase chain reaction (PCR) combined with sequencing verified mutation type and heritability. At 5 days post-fertilization (dpf), YO-PRO-1 staining was used to examine hair cell morphology and count in lateral line neuromasts and the otolith region. Auditory evoked potential (AEP) thresholds at 600, 800, 1 000, and 2 000 Hz were measured in nine 4-month-old wild type and mutant zebrafish per group.
RESULTS:
A stable p2rx2 knockout zebrafish line was successfully established. Sequencing revealed a 66 bp insertion at the first target site introducing a premature stop codon (TAA), leading to early termination of protein translation and loss of function. Embryos developed normally with no gross malformations. At 5 dpf, mutants exhibited significantly reduced hair cell density in the otolith region compared with wild type, although lateral line neuromasts were unaffected. AEP testing showed significantly elevated auditory thresholds at all 4 frequencies in homozygous mutants compared with wild type (all P<0.001), indicating reduced hearing sensitivity.
CONCLUSIONS
We successfully generated a p2rx2 loss-of-function zebrafish model using CRISPR/Cas9 technology. p2rx2 deficiency caused hair cell defects in the otolith region and increased auditory thresholds across frequencies, indicating its key role in maintaining zebrafish auditory hair cell function and hearing perception. The phenotype's restriction to the otolith region suggests tissue-specific roles of p2rx2 in sensory organs. This model provides a valuable tool for elucidating the molecular mechanisms of P2RX2-related hearing loss and for screening otoprotective drugs and developing gene therapies.
Animals
;
Zebrafish/genetics*
;
Receptors, Purinergic P2X2/deficiency*
;
CRISPR-Cas Systems/genetics*
;
Gene Knockout Techniques
;
Phenotype
;
Zebrafish Proteins/genetics*
;
Disease Models, Animal
10.4‑(Arylethyl)‑pyrrolo2,3-d pyrimidine improves post-traumatic stress disorder in mice by inhibiting mGluR5-regulated ERK1/2-SGK1 signaling pathway.
Cunbao HE ; Shaojie YANG ; Guoqi ZHU
Journal of Southern Medical University 2025;45(4):765-773
OBJECTIVES:
To observe the effect of 4-(arylethynyl)-pyrrolo[2,3-d] pyrimidine (10b) on post-traumatic stress disorder (PTSD)-like behaviors and ERK1/2-SGK1 signaling pathway in mice.
METHODS:
C57BL/6 mouse models exposed to single prolonged stress (SPS) were treated with daily gavage of saline, 10b at low, moderate and high doses, or paroxetine for 14 days. The changes in PTSD-like behaviors of SPS mice with different treatments were observed using behavioral tests. Western blotting and immunofluorescence assay were used to detect the protein expression levels of mGluR5, p-ERK, and SGK1 in the hippocampus of the mice. Pathological changes in the liver and kidney tissues of the mice were examined using HE staining. Molecular docking and molecular dynamics analyses were employed to evaluate the binding stability between the compound 10b and mGluR5.
RESULTS:
Compared to the normal control mice, the SPS mice exhibited obvious PTSD-like behaviors with increased hippocampal expressions of mGluR5 and p-ERK proteins and decreased SGK1 protein expression. Compound 10b significantly ameliorated behavioral abnormalities in SPS mice, inhibited mGluR5 expression, and reversed the dysregulation of p-ERK and SGK1. No obvious liver or kidney toxicity was observed after 10b treatment. Molecular docking and dynamics studies demonstrated a stable interaction between 10b and mGluR5.
CONCLUSIONS
The compound 10b ameliorates PTSD-like behaviors induced by SPS in mice possibly by inhibiting mGluR5 expression to modulate the ERK1/2-SGK1 signaling pathway.
Animals
;
Stress Disorders, Post-Traumatic/drug therapy*
;
Receptor, Metabotropic Glutamate 5/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Protein Serine-Threonine Kinases/metabolism*
;
Pyrimidines/pharmacology*
;
Immediate-Early Proteins/metabolism*
;
Signal Transduction/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Male
;
Molecular Docking Simulation
;
Hippocampus/metabolism*

Result Analysis
Print
Save
E-mail