1.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
2.Effects of ginsenoside Rb_1 on liver FXR pathway and liver and fecal bile acid profiles in rats induced by high-fat diet based on targeted metabolomics.
Xue LENG ; Yang LI ; Qi WANG ; Xin-Tong LI ; Mei-Jun LYU ; Yan-Na SUN
China Journal of Chinese Materia Medica 2025;50(16):4649-4658
A targeted metabolomics study was conducted on the bile acid profiles in the liver and feces of rats induced by a high-fat diet and intervened by ginsenoside Rb_1, along with the detection of FXR pathway gene expression in the liver, to explore and clarify its mechanism of action. The content of biochemical indicators in the serum were detected using an automatic biochemical analyzer. Hematoxylin and eosin(HE) staining and oil red O staining were used to detect pathological changes and lipid deposition in the liver. RT-PCR was used to detect the mRNA expression of FXR, small heterodimer partner(SHP), cholesterol 7 alpha-hydroxylase(CYP7A1), and sterol regulatory element-binding protein-1c(SREBP-1c) in the liver. Targeted bile acid metabolomics technology was employed to analyze changes in bile acid profiles in liver tissue and feces, and a correlation analysis was performed between key genes such as FXR, SHP, CYP7A1, SREBP-1c and differential bile acid metabolites. The results showed that ginsenoside Rb_1 significantly reduced the levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and high-density lipoprotein cholesterol(HDL-C) in the serum, alleviated the large fat vacuoles and lipid deposition in the liver, increased the expression of FXR mRNA in the liver, and decreased the expression of SREBP-1c mRNA. The expression of CYP7A1 and SHP mRNA was increased, but the differences were not statistically significant. Targeted bile acid metabolomics showed that ginsenoside Rb_1 could restore the levels of 9 bile acids in the liver and 8 bile acids in the feces. Ginsenoside Rb_1 also increased the percentage of taurocholic acid(TCA) in the liver(56.78%) and the percentage of 12-ketolithocholic acid(12-KLCA) in the feces(26.10%). Pathway enrichment analysis revealed two pathways involved in bile acid metabolism: primary bile acid biosynthesis and taurine and hypotaurine metabolism. Correlation analysis showed that FXR, SHP, CYP7A1, and SREBP-1c were positively correlated with multiple differential bile acids. These results suggest that ginsenoside Rb_1 may intervene in lipid metabolism disorders induced by a high-fat diet by regulating the FXR pathway and modulating bile acid profiles in the liver and feces.
Animals
;
Bile Acids and Salts/metabolism*
;
Rats
;
Ginsenosides/pharmacology*
;
Male
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Liver/drug effects*
;
Diet, High-Fat/adverse effects*
;
Metabolomics
;
Rats, Sprague-Dawley
;
Feces/chemistry*
;
Cholesterol 7-alpha-Hydroxylase/metabolism*
;
Sterol Regulatory Element Binding Protein 1/genetics*
;
Humans
3.Wendan Decoction ameliorates metabolic phenotypes in rats with metabolic syndrome and phlegm syndrome by modulating the gut microbiota-bile acid axis.
Kaiyue HUANG ; Jingxin QI ; Wenqian LUO ; Yixuan LIN ; Meimei CHEN ; Huijuan GAN
Journal of Southern Medical University 2025;45(6):1174-1184
OBJECTIVES:
To investigate the therapeutic mechanism of Wendan Decoction for phlegm syndrome in rats with metabolic syndrome (MS).
METHODS:
Forty Wistar rats were randomly divided into normal control group (n=8) and 3 phlegm syndrome model groups (induced by high-fat, high-sugar, and high-salt feeding and a single-dose intraperitoneal STZ injection; n=24) treated with daily gavage of saline, Wendan Decoction (3.6 g/kg), or metformin (0.1 g/kg) for 4 weeks. General conditions and glucose and lipid metabolism parameters of the rats were monitored, and serum LPS, liver histopathology, hepatic expressions of FXR, CYP7A1 and FGFR4 and ileal expressions of FXR and FGF15 were examined. Gut microbiota structure was analyzed using 16S rDNA sequencing, and serum bile acids were quantified with UHPLC-MS/MS.
RESULTS:
The rat models of phlegm syndrome exhibited severe hepatic steatosis and necrosis, increased body weight, abdominal circumference, Lee's index, FBG, FINS, HOMA-IR, TG, TC, LDL and LPS, and decreased HDL level. The abundance of Bacteroidetes, Megamonas, and Bacteroides in gut microbiota increased while Firmicutes, Lachnospiraceae_NK4A136_group, isohyodeoxycholic acid, and glycohyodeoxycholic acid decreased significantly; hepatic FXR and FGFR4 expressions and ileal FXR and FGF15 expressions decreased while hepatic CYP7A1 expression increased significantly in the rat models. Treatment with Wendan Decoction effectively alleviated hepatic pathology, reduced body weight and abdominal circumference, improved glucose and lipid metabolic profiles and gut microbiota structure, and reversed the changes in hepatic and ileal protein expressions. Correlation analysis revealed that Firmicutes and Lachnospiraceae_NK4A136_group were positively correlated while Bacteroidetes, Megamonas and Bacteroides were negative correlated with the levels of isohyodeoxycholic acid and hyodeoxycholic acid.
CONCLUSIONS
Wendan Decoction can significantly improve metabolic profiles in rats with phlegm syndrome of MS possibly by regulating the intestinal flora-bile acid axis to modulate the intestinal flora structure and maintain bile acid homeostasis via the FXR signaling pathway.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Metabolic Syndrome/microbiology*
;
Bile Acids and Salts/metabolism*
;
Rats, Wistar
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats
;
Male
;
Fibroblast Growth Factors/metabolism*
;
Liver/metabolism*
;
Cholesterol 7-alpha-Hydroxylase/metabolism*
;
Receptors, Cytoplasmic and Nuclear/metabolism*
4.Bile acids and their effects on diabetes.
Frontiers of Medicine 2018;12(6):608-623
Diabetes is a widespread, rapidly increasing metabolic disease that is driven by hyperglycemia. Early glycemic control is of primary importance to avoid vascular complications including development of retinal disorders leading to blindness, end-stage renal disease, and accelerated atherosclerosis with a higher risk of myocardial infarction, stroke and limb amputations. Even after hyperglycemia has been brought under control, "metabolic memory," a cluster of irreversible metabolic changes that allow diabetes to progress, may persist depending on the duration of hyperglycemia. Manipulation of bile acid (BA) receptors and the BA pool have been shown to be useful in establishing glycemic control in diabetes due to their ability to regulate energy metabolism by binding and activating nuclear transcription factors such as farnesoid X receptor (FXR) in liver and intestine as well as the G-protein coupled receptor, TGR5, in enteroendocrine cells and pancreatic β-cells. The downstream targets of BA activated FXR, FGF15/21, are also important for glucose/insulin homeostasis. In this review we will discuss the effect of BAs on glucose and lipid metabolism and explore recent research on establishing glycemic control in diabetes through the manipulation of BAs and their receptors in the liver, intestine and pancreas, alteration of the enterohepatic circulation, bariatric surgery and alignment of circadian rhythms.
Animals
;
Bile Acids and Salts
;
blood
;
metabolism
;
Blood Glucose
;
drug effects
;
metabolism
;
Circadian Rhythm
;
Diabetes Mellitus
;
blood
;
drug therapy
;
metabolism
;
Energy Metabolism
;
Homeostasis
;
Humans
;
Hyperglycemia
;
metabolism
;
physiopathology
;
Hypoglycemic Agents
;
therapeutic use
;
Intestinal Mucosa
;
metabolism
;
Intestines
;
drug effects
;
Lipid Metabolism
;
Liver
;
drug effects
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Receptors, G-Protein-Coupled
;
metabolism
;
Signal Transduction
5.Hypolipidemic effect of SIPI-7623, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism.
Yi-Fang DENG ; Xiao-Ling HUANG ; Mei SU ; Peng-Xia YU ; Zhen ZHANG ; Quan-Hai LIU ; Guo-Ping WANG ; Min-Yu LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):572-579
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid and cholesterol metabolism and lipid and glucose homeostasis. Therefore, FXR is a potential drug target for several metabolic syndromes, especially those related to lipidemia disorders. In the present study, we identified small molecule SIPI-7623, a derivative of an extract from Oriental wormwood (Artemisia capillaris), and found that it specifically upregulated the expression of cholesterol-7-alpha-hydroxylase (CYP7A1), downregulated the expression of sterol-regulatory element-binding protein 1c (SREBP-1c) in the liver, and inhibited the expression of ileal bile acid binding-protein (IBABP) in the ileum of rats. We found that inhibition of FXR by SIPI-7623 decreased the level of cholesterol and triglyceride. SIPI-7623 reduced the levels of cholesterol and triglyceride in in vitro HepG2 cell models, ameliorated diet-induced atherosclerosis, and decreased the serum lipid content on rats and rabbits model of atherosclerosis in vivo. Furthermore, SIPI-7623 decreased the extent of atherosclerotic lesions. Our resutls demonstrated that antagonism of the FXR pathway can be employed as a therapeutic strategy to treat metabolic diseases such as hyperlipidemia and atherosclerosis. In conclusion, SIPI-7623 could be a promising lead compound for development of drugs to treat hyperlipidemia and atherosclerosis.
Animals
;
Artemisia
;
chemistry
;
Atherosclerosis
;
drug therapy
;
genetics
;
metabolism
;
Cholesterol
;
metabolism
;
Cholesterol 7-alpha-Hydroxylase
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypolipidemic Agents
;
administration & dosage
;
Liver
;
drug effects
;
metabolism
;
Male
;
Rabbits
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cytoplasmic and Nuclear
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
6.Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats.
Yang CHENG ; Jing-Yin MAI ; Mei-Feng WANG ; Gao-Feng CHEN ; Jian PING
Chinese journal of integrative medicine 2017;23(1):48-54
OBJECTIVETo study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR).
METHODSFifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR.
RESULTSCompared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01).
CONCLUSIONTFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.
Actins ; metabolism ; Animals ; Blotting, Western ; Body Weight ; drug effects ; Collagen Type I ; metabolism ; Dimethylnitrosamine ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Flavonoids ; pharmacology ; therapeutic use ; Hydroxyproline ; metabolism ; Liver ; drug effects ; pathology ; Liver Cirrhosis ; blood ; drug therapy ; genetics ; pathology ; Male ; Organ Size ; drug effects ; PPAR gamma ; genetics ; metabolism ; Plant Extracts ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Uncoupling Protein 2 ; genetics ; metabolism
7.Nr2e1 Downregulation Is Involved in Excess Retinoic Acid-induced Developmental Abnormality in the Mouse Brain.
Juan YU ; Qian GUO ; Jian Bing MU ; Ting ZHANG ; Ren Ke LI ; Jun XIE
Biomedical and Environmental Sciences 2017;30(3):185-193
OBJECTIVEThis study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality.
METHODSThe mouse model of brain abnormality was established by administering 28 mg/kg RA, and neural stem cells (NSCs) were isolated from the mouse embryo and cultured in vitro. Nr2e1 expression was detected by whole mount in situ hybridization, RT-PCR, and Western blotting. Nr2e1 function was determined by transducing Nr2e1 shRNA into NSCs, and the effect on the sonic hedgehog (Shh) signaling pathway was assessed in the cells. In addition, the regulation of Nr2e1 expression by RA was also determined in vitro.
RESULTSNr2e1 expression was significantly downregulated in the brain and NSCs of RA-treated mouse embryos, and knockdown of Nr2e1 affected the proliferation of NSCs in vitro. In addition, a similar expression pattern of Nr2e1 and RA receptor (RAR) α was observed after treatment of NSCs with different concentrations of RA.
CONCLUSIONOur study demonstrated that Nr2e1 could be regulated by RA, which would aid a better understanding of the mechanism underlying RA-induced brain abnormality.
Animals ; Brain ; cytology ; embryology ; Cell Proliferation ; Down-Regulation ; Gene Expression Regulation ; Gene Expression Regulation, Developmental ; drug effects ; Mice ; Mice, Inbred C57BL ; Neural Stem Cells ; drug effects ; physiology ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Tretinoin ; pharmacology
8.IFN-γ secretion in gut of Ob/Ob mice after vertical sleeve gastrectomy and its function in weight loss mechanism.
Jin-Peng DU ; Geng WANG ; Chao-Jie HU ; Qing-Bo WANG ; Hui-Qing LI ; Wen-Fang XIA ; Xiao-Ming SHUAI ; Kai-Xiong TAO ; Guo-Bin WANG ; Ze-Feng XIA
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):377-382
Vertical sleeve gastrectomy (VSG) is becoming more and more popular among the world. Despite its dramatic efficacy, however, the mechanism of VSG remains largely undetermined. This study aimed to test interferon (IFN)-γ secretion n of mesenteric lymph nodes in obese mice (ob/ob mice), a model of VSG, and its relationship with farnesoid X receptor (FXR) expression in the liver and small intestine, and to investigate the weight loss mechanism of VSG. The wild type (WT) mice and ob/ob mice were divided into four groups: A (WT+Sham), B (WT+VSG), C (ob/ob+Sham), and D (ob/ob+VSG). Body weight values were monitored. The IFN-γ expression in mesenteric lymph nodes of ob/ob mice pre- and post-operation was detected by flow cytometry (FCM). The FXR expression in the liver and small intestine was detected by Western blotting. The mouse AML-12 liver cells were stimulated with IFN-γ at different concentrations in vitro. The changes of FXR expression were also examined. The results showed that the body weight of ob/ob mice was significantly declined from (40.6±2.7) g to (27.5±3.8) g on the 30th day after VSG (P<0.05). At the same time, VSG induced a higher level secretion of IFN-γ in mesenteric lymph nodes of ob/ob mice than that pre-operation (P<0.05). The FXR expression levels in the liver and small intestine after VSG were respectively 0.97±0.07 and 0.84±0.07 fold of GAPDH, which were significantly higher than pre-operative levels of 0.50±0.06 and 0.48±0.06 respectively (P<0.05). After the stimulation of AML-12 liver cells in vitro by different concentrations of IFN-γ (0, 10, 25, 50, 100, and 200 ng/mL), the relative FXR expression levels were 0.22±0.04, 0.31±0.04, 0.39±0.05, 0.38±0.05, 0.56±0.06, and 0.35±0.05, respectively, suggesting IFN-γ could distinctly promote the FXR expression in a dose-dependent manner in comparison to those cells without IFN-γ stimulation (P<0.05). It was concluded that VSG induces a weight loss in ob/ob mice by increasing IFN-γ secretion of mesenteric lymph nodes, which then increases the FXR expression of the liver and small intestine.
Animals
;
Body Weight
;
Cell Line
;
Gastrectomy
;
methods
;
Gene Expression
;
Hepatocytes
;
cytology
;
drug effects
;
metabolism
;
Interferon-gamma
;
biosynthesis
;
pharmacology
;
secretion
;
Intestine, Small
;
drug effects
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Lymph Nodes
;
drug effects
;
metabolism
;
Mesentery
;
drug effects
;
metabolism
;
Mice
;
Mice, Obese
;
Obesity
;
metabolism
;
pathology
;
surgery
;
Receptors, Cytoplasmic and Nuclear
;
agonists
;
genetics
;
metabolism
;
Weight Loss
9.Study on inhibitory effect of calycosin on hepatic stellate cell activation in rats by up-regulating peroxisome proliferator-activated receptor γ.
Jian PING ; Hong-yun CHEN ; Yang ZHOU ; Gao-feng CHEN ; Lie-ming XU ; Yang CHENG
China Journal of Chinese Materia Medica 2015;40(12):2383-2388
To observe the effect of calycosin on the proliferation and activation of primary hepatic stellate cells (HSCs) in rats, and prove calycosin shows the effects through peroxisome proliferator-activated receptor γ(PPARγ) and farnesoid X receptor (FXR). The results indicated that calycosin could inhibit HSC proliferation and expressions of activation marker smooth muscle actin-α and type I collagen. With the increase in HSC activation time, FXR expression reduced, but with no notable impact from calycosin. Calycosin could up-regulate PPARγ expression and its nuclear transition in a concentration-dependent manner. Its prohibitory effect on HSC activation could be blocked by PPARγ antagonist. In conclusion, calycosin could inhibit HSC activation and proliferation, which may be related with the up-regulation of PPARγ signal pathway.
Animals
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
pharmacology
;
Hepatic Stellate Cells
;
cytology
;
drug effects
;
metabolism
;
Isoflavones
;
pharmacology
;
Male
;
PPAR gamma
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
10.Reversal Effect of curcuma wenyujin extract on SGC-7901/VCR induced subcutaneous transplanted tumor in nude mice and its effect on the expression of P-glycoprotein.
Li-Jun CAI ; Shu-Ping SONG ; Bin LU ; Li-Na MENG
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(11):1347-1353
OBJECTIVETo explore the reversal effect of multidrug resistance of Curcuma Wenyujin (CW) and its possible mechanism by establishing Vincristine-resistant gastric cancer SGC-7901 cells (SGC-7901/VCR) induced subcutaneous transplanted tumor in nude mice.
METHODSFirst we identified the resistance of SGC-7901/VCR by using methyl thiazolyl tetrazolium (MTT). The SGC-7901/VCR induced subcutaneous transplanted tumor model was established in 50 BALB/c nude mice by tissue block method. After 2 -3 weeks 36 mice with similar tumor size were selected and divided into 6 groups by random digit table, i.e., the model group, the Vincristine (VCR) group, the low dose CW group, the high dose CW group, the low dose CW combined VCR group, and the high dose CW combined VCR group, 6 in each group. Normal saline was intraperitoneally injected to mice in the model group at 10 mL/kg, once per 2 days. VCR was intraperitoneally injected to mice in the VCR group at 0.28 mg/kg once per 2 days. CW at 1.4 and 2.8 g/kg was administered to mice in the low and high dose CW groups by gastrogavage, 0.2 mL each time, once daily. CW at 1.4 and 2.8 g/kg was administered by gastrogavage and VCR was intraperitoneally injected at 0.28 mg/kg, once per 2 days to mice in the low dose CW combined VCR group and the high dose CW combined VCR group. All medication lasted for 14 days. The tumor growth was observed. The inhibition rate was calculated. Meanwhile, the positioning and expression of P-glycoprotein (P-gp) were detected by immunohistochemistry and Western blot.
RESULTSSGC-7901/VCR had strong resistance to VCR, Adramycin (ADM), fluorouracil (5-FU), and Cisplatin (DDP), especially to VCR. Proliferation activities of SGC-7901/VCR were significantly enhanced after drug elution. The tumor volume gradually increased as time went by. The tumor volume was the minimum in the high dose CW combined VCR group. The tumor volume was obviously reduced in the high dose CW combined VCR group with obviously reduced with increased inhibition rate of 51.56%, when compared with that of the model group and the VCR group (P < 0.05). Western blot test showed that, when compared with the model group, the gray level of P-gp in the VCR group increased (P < 0.05), and the relative expression of P-gp in the high dose CW group, the low dose CW combined VCR group, and the high dose CW combined VCR group significantly decreased (P < 0.05). Compared with the VCR group, the gray level of the P-gp decreased in the low dose CW group, the high dose CW group, the low dose CW combined VCR group, and the high dose CW combined VCR group (P < 0.05). Results of immunohistochemistry showed that, when compared with the model group, expression scores of P-gp in the high dose CW group, the low dose CW combined VCR group, and the high dose CW combined VCR group decreased with statistical difference (P < 0.05). Compared with the VCR group, expression scores of P-gp were obviously lowered in the low dose CW group, the high dose CW group, the low dose CW combined VCR group, and the high dose CW combined VCR group (P < 0.05).
CONCLUSIONSCW could reverse the drug resistance of SGC-7901/VCR subcutaneous transplanted tumor. And its mechanism might be related to down-regulating the expression of P-gp, suggesting that CW could be used as a kind of multidrug resistance reversal agent based on P-gp.
ATP-Binding Cassette, Sub-Family B, Member 1 ; metabolism ; Animals ; Cell Line, Tumor ; Cisplatin ; therapeutic use ; Curcuma ; Drug Resistance, Multiple ; drug effects ; Drug Resistance, Neoplasm ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Fluorouracil ; therapeutic use ; Guanylate Cyclase ; Mice ; Mice, Nude ; Receptors, Cytoplasmic and Nuclear ; Soluble Guanylyl Cyclase ; Stomach Neoplasms ; Vincristine ; therapeutic use

Result Analysis
Print
Save
E-mail