1.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
2.Effects of ginsenoside Rb_1 on liver FXR pathway and liver and fecal bile acid profiles in rats induced by high-fat diet based on targeted metabolomics.
Xue LENG ; Yang LI ; Qi WANG ; Xin-Tong LI ; Mei-Jun LYU ; Yan-Na SUN
China Journal of Chinese Materia Medica 2025;50(16):4649-4658
A targeted metabolomics study was conducted on the bile acid profiles in the liver and feces of rats induced by a high-fat diet and intervened by ginsenoside Rb_1, along with the detection of FXR pathway gene expression in the liver, to explore and clarify its mechanism of action. The content of biochemical indicators in the serum were detected using an automatic biochemical analyzer. Hematoxylin and eosin(HE) staining and oil red O staining were used to detect pathological changes and lipid deposition in the liver. RT-PCR was used to detect the mRNA expression of FXR, small heterodimer partner(SHP), cholesterol 7 alpha-hydroxylase(CYP7A1), and sterol regulatory element-binding protein-1c(SREBP-1c) in the liver. Targeted bile acid metabolomics technology was employed to analyze changes in bile acid profiles in liver tissue and feces, and a correlation analysis was performed between key genes such as FXR, SHP, CYP7A1, SREBP-1c and differential bile acid metabolites. The results showed that ginsenoside Rb_1 significantly reduced the levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and high-density lipoprotein cholesterol(HDL-C) in the serum, alleviated the large fat vacuoles and lipid deposition in the liver, increased the expression of FXR mRNA in the liver, and decreased the expression of SREBP-1c mRNA. The expression of CYP7A1 and SHP mRNA was increased, but the differences were not statistically significant. Targeted bile acid metabolomics showed that ginsenoside Rb_1 could restore the levels of 9 bile acids in the liver and 8 bile acids in the feces. Ginsenoside Rb_1 also increased the percentage of taurocholic acid(TCA) in the liver(56.78%) and the percentage of 12-ketolithocholic acid(12-KLCA) in the feces(26.10%). Pathway enrichment analysis revealed two pathways involved in bile acid metabolism: primary bile acid biosynthesis and taurine and hypotaurine metabolism. Correlation analysis showed that FXR, SHP, CYP7A1, and SREBP-1c were positively correlated with multiple differential bile acids. These results suggest that ginsenoside Rb_1 may intervene in lipid metabolism disorders induced by a high-fat diet by regulating the FXR pathway and modulating bile acid profiles in the liver and feces.
Animals
;
Bile Acids and Salts/metabolism*
;
Rats
;
Ginsenosides/pharmacology*
;
Male
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Liver/drug effects*
;
Diet, High-Fat/adverse effects*
;
Metabolomics
;
Rats, Sprague-Dawley
;
Feces/chemistry*
;
Cholesterol 7-alpha-Hydroxylase/metabolism*
;
Sterol Regulatory Element Binding Protein 1/genetics*
;
Humans
3.Hypolipidemic effect of SIPI-7623, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism.
Yi-Fang DENG ; Xiao-Ling HUANG ; Mei SU ; Peng-Xia YU ; Zhen ZHANG ; Quan-Hai LIU ; Guo-Ping WANG ; Min-Yu LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):572-579
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid and cholesterol metabolism and lipid and glucose homeostasis. Therefore, FXR is a potential drug target for several metabolic syndromes, especially those related to lipidemia disorders. In the present study, we identified small molecule SIPI-7623, a derivative of an extract from Oriental wormwood (Artemisia capillaris), and found that it specifically upregulated the expression of cholesterol-7-alpha-hydroxylase (CYP7A1), downregulated the expression of sterol-regulatory element-binding protein 1c (SREBP-1c) in the liver, and inhibited the expression of ileal bile acid binding-protein (IBABP) in the ileum of rats. We found that inhibition of FXR by SIPI-7623 decreased the level of cholesterol and triglyceride. SIPI-7623 reduced the levels of cholesterol and triglyceride in in vitro HepG2 cell models, ameliorated diet-induced atherosclerosis, and decreased the serum lipid content on rats and rabbits model of atherosclerosis in vivo. Furthermore, SIPI-7623 decreased the extent of atherosclerotic lesions. Our resutls demonstrated that antagonism of the FXR pathway can be employed as a therapeutic strategy to treat metabolic diseases such as hyperlipidemia and atherosclerosis. In conclusion, SIPI-7623 could be a promising lead compound for development of drugs to treat hyperlipidemia and atherosclerosis.
Animals
;
Artemisia
;
chemistry
;
Atherosclerosis
;
drug therapy
;
genetics
;
metabolism
;
Cholesterol
;
metabolism
;
Cholesterol 7-alpha-Hydroxylase
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypolipidemic Agents
;
administration & dosage
;
Liver
;
drug effects
;
metabolism
;
Male
;
Rabbits
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cytoplasmic and Nuclear
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
4.Establishment of in vitro evaluation model for CYP2B6 induction and its application to screen inducers among TCMs.
Cong XU ; Si-Yun XU ; Hai-Hong HU ; Lu-Shan YU ; Su ZENG
Acta Pharmaceutica Sinica 2013;48(1):119-124
This paper is to report the development of a high-throughput in vitro system to screen hPXR/CAR mediated CYP2B6 drug inducers, and the application of it into the quick determination of induction activity toward CYP2B6 by various commonly used traditional Chinese medicines (TCMs) extract. Dual reporter gene assays were performed. The hPXR/CAR expression vectors and the reporter vector pGL3-CYP2B6-Luc involved in the distal and proximal promoters of CYP2B6 were co-transfected into HepG2 cells. Relative luciferase activities in cell lysate were analyzed after 48 h treatment of blank vehicle or drugs to determine the induction activity toward CYP2B6 by various commonly used TCMs extract. The positive hPXR/hCAR activators rifampicin and CITCO were applied to make sure that the reporter gene model was successfully established. Then 5 kinds of commonly used TCM extracts and 1 herbal compound were successfully investigated, some were found to activate hPXR or hCAR and therefore have the potential to induce CYP2B6 enzyme. This is the first domestic article to report the hCAR3-mediated CYP2B6 induction model and the establishment of a reporter gene system for hPXR/CAR-mediated CYP2B6 induction can be an effective and systemic in vitro method to investigate the drug inducers of CYP2B6 and to explain the mechanism involved.
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2B6
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Genes, Reporter
;
Genetic Vectors
;
Hep G2 Cells
;
High-Throughput Screening Assays
;
Humans
;
Luciferases
;
genetics
;
metabolism
;
Oximes
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Plasmids
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Receptors, Steroid
;
genetics
;
metabolism
;
Rifampin
;
pharmacology
;
Thiazoles
;
pharmacology
;
Transfection
5.Induction of UGT1A1 expression by praeruptorin A and praeruptorin C through hCAR pathway.
Xu-Nian ZHOU ; Hui-Chang BI ; Jing JIN ; Rong-Rong DENG ; Meng-Jia YING ; Yong-Tao WANG ; Min HUANG
Acta Pharmaceutica Sinica 2013;48(5):794-798
This study is purposed to investigate the effects of praeruptorin A (PA) and praeruptorin C (PC) on UGT1A1 in HepG2 cells through hCAR pathway. PA and PC were incubated with HepG2 cells for 24 h and 48 h, mRNA and protein expressions of UGT1A1 were determined by real-time PCR and Western blotting assays. Additionally, effects of PA and PC on UGT1A1 mRNA and protein expressions were also measured after transient transfection of a specific CAR siRNA for 72 h in HepG2 cells. UGT1A1 mRNA and protein expression levels were significantly increased by PA and PC after incubation for 48 h. Moreover, the mRNA and protein up-regulations of UGT1A1 were attenuated by transient transfection of a specific CAR siRNA, suggesting the induction was mediated by CAR. The results suggest that PA and PC can significantly up-regulate UGT1A1 expression partially via the CAR-mediated pathway.
Apiaceae
;
chemistry
;
Coumarins
;
isolation & purification
;
pharmacology
;
Drugs, Chinese Herbal
;
pharmacology
;
Glucuronosyltransferase
;
genetics
;
metabolism
;
Hep G2 Cells
;
Humans
;
Plant Roots
;
chemistry
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Signal Transduction
;
Transfection
6.Progress in the ligands and their complex structures of farnesoid X receptor.
Wei-Hu LI ; Jing FU ; Ming-Yue ZHENG ; Gui-Xia LIU ; Yun TANG
Acta Pharmaceutica Sinica 2012;47(6):704-715
Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily. It is highly related to the formation of metabolic syndrome and the glucose homeostasis, and therefore represents an important drug target against metabolic diseases and diabetes. In recent years, great progress has been made in the agonists, antagonists, and crystal structures of FXR. The diverse FXR ligands and their structure-activity relationship are reviewed in this article. The advances in the crystal structures of FXR in complex with different ligands are also introduced.
Animals
;
Anticholesteremic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Azepines
;
chemical synthesis
;
chemistry
;
pharmacology
;
Benzene Derivatives
;
chemical synthesis
;
chemistry
;
pharmacology
;
Chenodeoxycholic Acid
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
pharmacology
;
Crystallization
;
Humans
;
Indoles
;
chemical synthesis
;
chemistry
;
pharmacology
;
Isoxazoles
;
chemical synthesis
;
chemistry
;
pharmacology
;
Ligands
;
Molecular Structure
;
Multienzyme Complexes
;
chemical synthesis
;
chemistry
;
pharmacology
;
Pregnenediones
;
chemical synthesis
;
chemistry
;
pharmacology
;
Receptors, Cytoplasmic and Nuclear
;
agonists
;
antagonists & inhibitors
;
metabolism
;
Structure-Activity Relationship
7.Advances in the study of organic anion transporting polypeptide 1B3.
Acta Pharmaceutica Sinica 2011;46(11):1279-1285
OATP1B3, a member of SLC superfamily, is specifically expressed on the sinusoidal membrane of hepatocytes and is considered to be important in hepatic drug elimination. The overexpression of OATP1B3 was found recently in tumor tissues such as prostate, colon, and pancreatic tumors. Sequence variations in SLCO1B3 gene, such as SNPs, have been described and a common haplotype consisting of 334T>G and 699G>A SNPs is related to altered transport characteristics of OATP1B3. OATP1B3 is of relevance to drug metabolism through affecting alteration of hepatic concentration of endo- and xenobiotic compounds that interact with nuclear receptors such as PXR and CAR, and thereby directly alter the extent of target gene transcription, including major CYP isoenzymes such as CYP3A4. This review will provide an overview of substrates and inhibitors of OATP1B3 and subsequently to assess the effect of genetic mutation on transport activity. The studies linking OATP1B3 with cancer clinical outcomes are also discussed in this review.
Animals
;
Biological Transport
;
Cytochrome P-450 CYP3A
;
metabolism
;
Drug Interactions
;
Gene Expression Regulation, Neoplastic
;
Gene Frequency
;
Hepatocytes
;
metabolism
;
Humans
;
Liver
;
metabolism
;
Neoplasms
;
metabolism
;
Organic Anion Transporters, Sodium-Independent
;
antagonists & inhibitors
;
chemistry
;
genetics
;
Polymorphism, Single Nucleotide
;
RNA, Messenger
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Receptors, Steroid
;
metabolism
;
Solute Carrier Organic Anion Transporter Family Member 1B3
8.Vasorelaxation effects of homoisoflavonoids from Caesalpinia sappan in rat thoracic aortic rings.
Wenjun HE ; Taihui FANG ; Ke ZHANG ; Pengfei TU
China Journal of Chinese Materia Medica 2009;34(6):731-734
OBJECTIVETo identify and elucidate the vasorelaxant activity of homoisoflavonoids, the main chemical components from Lignum Sappan (the stems of Caesalpinia sappan), in isolated rat thoracic aortic rings pre-contracted with phenylephrine (PE, 1 micromol x L(-1)) and KCl (60 mmol x L(-1)).
METHODThe tension of rat thoracic aorta rings was used to evaluated the vasorelaxant activities of four homoisoflavonoids, brazlin (1), (E)-3-(3,4-dihydroxybenzylidene)-7-hydroxychroman-4-one (2), sappanone B (3), 3-deoxysappanone B (4).
RESULTCumulative addition of homoisoflavonoids (2, 3 and 4) (50-1000 micromol x L(-1)) exhibited an acute relaxation either in endothelium-intact or endothelium-denuded rings in a concentration-dependent manner. However, this relaxation was significantly inhibited in endothelium-denuded condition and in the presence of endothelial nitric oxide synthase (eNOS) inhibitor, N(W)-nitro-L-arginine methyl ester (L-NNA, 100 micromol x L(-1)), and a soluble guanylate cylcase (sGC) inhibitor, methylene blue (MB, 10 micromol x L(-1)) when addition of variation homoisoflavonoids brazlin (1) (50-1000 micromol x L(-1)).
CONCLUSIONThese results indicate that normo-homoisoflavonoids (2, 3 and 4) from Caesalpinia sappan mediates endothelium-independent vasodilator action in rat thoracic aortic rings, while the variation homoisoflavonoids brazlin elicits endothelium-dependent relaxation might via nitric oxide (NO)-cGMP pathway. This research could explain the pharmacological activities of homoisoflavonoids to a certain degree.
Animals ; Aorta, Thoracic ; drug effects ; physiology ; Caesalpinia ; chemistry ; Endothelium ; metabolism ; Enzyme Inhibitors ; pharmacology ; Flavonoids ; chemistry ; pharmacology ; Guanylate Cyclase ; antagonists & inhibitors ; Male ; Muscle Contraction ; drug effects ; NG-Nitroarginine Methyl Ester ; pharmacology ; Nitric Oxide Synthase Type III ; antagonists & inhibitors ; Phenylephrine ; pharmacology ; Potassium Chloride ; pharmacology ; Rats ; Receptors, Cytoplasmic and Nuclear ; antagonists & inhibitors ; Soluble Guanylyl Cyclase ; Vasodilation ; drug effects ; Vasodilator Agents ; chemistry ; pharmacology
9.Updates on biologic function of tumor suppressor gene inhibitor of growth family and related studies.
Chinese Journal of Pathology 2009;38(12):859-861
Animals
;
Apoptosis
;
Cell Cycle
;
Cell Cycle Proteins
;
genetics
;
metabolism
;
physiology
;
DNA Repair
;
Homeodomain Proteins
;
genetics
;
metabolism
;
physiology
;
Humans
;
Inhibitor of Growth Protein 1
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
physiology
;
Neoplasm Metastasis
;
Neoplasms
;
metabolism
;
pathology
;
Neovascularization, Pathologic
;
pathology
;
Nuclear Proteins
;
genetics
;
metabolism
;
physiology
;
Prognosis
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
physiology
;
Signal Transduction
;
Transcription Factors
;
genetics
;
metabolism
;
physiology
;
Tumor Suppressor Protein p53
;
metabolism
;
Tumor Suppressor Proteins
;
chemistry
;
genetics
;
metabolism
;
physiology
10.Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation.
Bu Yeon KIM ; Hyungsoo KIM ; Eun Jung CHO ; Hong Duk YOUN
Experimental & Molecular Medicine 2008;40(1):71-83
In this study, we investigated the role of Nur77, an orphan nuclear receptor, in HIF-alpha transcriptional activity. We found that Nur77 associates and stabilizes HIF-1alpha via indirect interaction. Nur77 was found to interact with pVHL in vivo via the alpha-domain of pVHL. By binding to pVHL, Nur77 competed with elongin C for pVHL binding. Moreover, Nur77-binding to pVHL inhibited the pVHL-mediated ubiquitination of HIF-1alpha and ultimately increased the stability and transcriptional activity of HIF-1alpha. The ligand-binding domain of Nur77 was found to interact with pVHL and the expression of this ligand-binding domain was sufficient to stabilize and transactivate HIF-1alpha. Under the conditions that cobalt chloride was treated or pVHL was knocked down, Nur77 could not stabilize HIF-alpha. Moreover, Nur77 could not further stabilize HIF-2alpha in A498/VHL stable cells, which is consistent with our finding that Nur77 indirectly stabilizes HIF-alpha by binding to pVHL. Thus, our results suggest that an orphan nuclear receptor Nur77 binds to pVHL, thereby stabilizes and increases HIF-alpha transcriptional activity under the non- hypoxic conditions.
Animals
;
DNA-Binding Proteins/chemistry/*metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*genetics
;
Models, Biological
;
PC12 Cells
;
Protein Binding
;
*Protein Processing, Post-Translational
;
Protein Structure, Tertiary
;
Rats
;
Receptors, Cytoplasmic and Nuclear/chemistry/*metabolism
;
Receptors, Steroid/chemistry/*metabolism
;
Thermodynamics
;
Transcription Factors/chemistry/*metabolism
;
Transcriptional Activation/genetics
;
Ubiquitination
;
Up-Regulation/*genetics
;
Von Hippel-Lindau Tumor Suppressor Protein/*antagonists & inhibitors/chemistry/*metabolism

Result Analysis
Print
Save
E-mail